
 
Unicenter 
 
TCPaccess Communications Server
Assembler API Programmer Reference
 

Version 6.0  

 
  
 

 
The Software That Manages eBusiness 



  

 

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for 
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates 
International, Inc. (“CA”) at any time. 

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without 
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright 
laws of the United States and international treaties.   

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for 
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only 
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the 
license for the software are permitted to have access to such copies. 

This right to print copies is limited to the period during which the license for the product remains in full force and 
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced 
copies or to certify to CA that same have been destroyed. 

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind, 
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or 
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or 
indirect, from the use of this documentation, including without limitation, lost profits, business interruption, 
goodwill, or lost data, even if CA is expressly advised of such loss or damage. 

The use of any product referenced in this documentation and this documentation is governed by the end user’s 
applicable license agreement. 

The manufacturer of this documentation is Computer Associates International, Inc. 

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or 
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions. 

 2002 Computer Associates International, Inc. (CA) 

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

     



  

 

 Contents 

Chapter 1: Assembler Language Macro Instructions 
Conventions, Definitions, and Terminology .................................................................................................... 1–1 
Basic Format of Macro Descriptions.................................................................................................................. 1–1 
Assembler Format Description........................................................................................................................... 1–2 
Syntax Description ............................................................................................................................................... 1–2 
Completion Information...................................................................................................................................... 1–3 
Return Codes ........................................................................................................................................................ 1–4 
Usage Information................................................................................................................................................ 1–4 
Macro Instruction Operand Notation................................................................................................................ 1–4 
Macro Instruction Operand Types..................................................................................................................... 1–5 
Keyword Operands.............................................................................................................................................. 1–5 
Positional Operands............................................................................................................................................. 1–7 
Operand Coding Order ....................................................................................................................................... 1–7 
List, Generate, Modify, and Execute Forms ..................................................................................................... 1–8 
Standard Macro Instruction Disadvantages..................................................................................................... 1–8 
Alternative API Macro Instructions................................................................................................................... 1–8 
Actions Taken for Various Macro Instruction Forms...................................................................................... 1–9 
Runtime Characteristics of Various Macro Instruction Forms .................................................................... 1–10 
List Form.............................................................................................................................................................. 1–10 
Modify Form ....................................................................................................................................................... 1–11 
Execute Form ...................................................................................................................................................... 1–12 
Optional and Required Operands.................................................................................................................... 1–12 
Default and Maximum Values ......................................................................................................................... 1–13 
Linkage Conventions ......................................................................................................................................... 1–14 
Register Contents on Routine Entry ................................................................................................................ 1–14 
Register Contents on Return............................................................................................................................. 1–15 
Macro Instructions Descriptions ...................................................................................................................... 1–15 
ACLOSE............................................................................................................................................................... 1–16 

Contents    iii 



  

Completion Information ................................................................................................................................... 1–16 
Return Codes ...................................................................................................................................................... 1–17 
Usage Information ............................................................................................................................................. 1–18 
AOPEN................................................................................................................................................................ 1–18 
Completion Information ................................................................................................................................... 1–19 
Usage Information ............................................................................................................................................. 1–20 
APCB.................................................................................................................................................................... 1–22 
Completion Information ................................................................................................................................... 1–27 
Return Codes ...................................................................................................................................................... 1–27 
Usage Information ............................................................................................................................................. 1–27 
TACCEPT............................................................................................................................................................ 1–28 
Completion Information ................................................................................................................................... 1–31 
Return Codes ...................................................................................................................................................... 1–32 
Usage Information ............................................................................................................................................. 1–33 
TADDR................................................................................................................................................................ 1–34 
Completion Information ................................................................................................................................... 1–37 
Return Codes ...................................................................................................................................................... 1–38 
Usage Information ............................................................................................................................................. 1–39 
TBIND.................................................................................................................................................................. 1–40 
Completion Information ................................................................................................................................... 1–45 
Return Codes ...................................................................................................................................................... 1–46 
Usage Information ............................................................................................................................................. 1–47 
TCHECK.............................................................................................................................................................. 1–49 
Completion Information ................................................................................................................................... 1–49 
Return Codes ...................................................................................................................................................... 1–50 
Usage Information ............................................................................................................................................. 1–51 
TCLEAR .............................................................................................................................................................. 1–53 
Completion Information ................................................................................................................................... 1–55 
Return Codes ...................................................................................................................................................... 1–56 
Usage Information ............................................................................................................................................. 1–57 
TCLOSE ............................................................................................................................................................... 1–59 
Completion Information ................................................................................................................................... 1–62 
Return Codes ...................................................................................................................................................... 1–63 
Usage Information ............................................................................................................................................. 1–64 
TCONFIRM......................................................................................................................................................... 1–66 
Completion Information ................................................................................................................................... 1–70 
Return Codes ...................................................................................................................................................... 1–71 
Usage Information ............................................................................................................................................. 1–72 
TCONNECT........................................................................................................................................................ 1–73 

iv     Assembler API Programmer Reference 



  

Completion Information.................................................................................................................................... 1–76 
Return Codes ...................................................................................................................................................... 1–76 
Usage Information.............................................................................................................................................. 1–77 
TDISCONN ......................................................................................................................................................... 1–78 
Completion Information.................................................................................................................................... 1–81 
Return Codes ...................................................................................................................................................... 1–81 
Usage Information.............................................................................................................................................. 1–82 
TDSECT ............................................................................................................................................................... 1–84 
Completion Information.................................................................................................................................... 1–86 
Return Codes ...................................................................................................................................................... 1–86 
Usage Information.............................................................................................................................................. 1–86 
TERROR............................................................................................................................................................... 1–87 
Completion Information.................................................................................................................................... 1–88 
Return Codes ...................................................................................................................................................... 1–88 
Usage Information.............................................................................................................................................. 1–89 
Format of a Verbatim Message......................................................................................................................... 1–90 
TEVNTLST .......................................................................................................................................................... 1–91 
Event Codes ........................................................................................................................................................ 1–93 
TPEND Reason Codes ....................................................................................................................................... 1–93 
Completion Information.................................................................................................................................... 1–94 
Return Codes ...................................................................................................................................................... 1–94 
Usage Information.............................................................................................................................................. 1–94 
TEXEC.................................................................................................................................................................. 1–95 
Completion Information.................................................................................................................................... 1–98 
Return Codes ...................................................................................................................................................... 1–99 
Usage Information............................................................................................................................................ 1–100 
TEXLST .............................................................................................................................................................. 1–101 
Recovery Action Codes ................................................................................................................................... 1–103 
Event Codes ...................................................................................................................................................... 1–104 
APEND and TPEND Reason Codes .............................................................................................................. 1–105 
Completion Information.................................................................................................................................. 1–105 
Return Codes .................................................................................................................................................... 1–105 
Usage Information............................................................................................................................................ 1–106 
TINFO ................................................................................................................................................................ 1–107 

Contents    v 



  

Completion Information ................................................................................................................................. 1–111 
Return Codes .................................................................................................................................................... 1–111 
Usage Information ........................................................................................................................................... 1–112 
Basic Protocol Information Returned............................................................................................................ 1–113 
Transport Service Limits ................................................................................................................................. 1–114 
Transport Interface Limits .............................................................................................................................. 1–114 
Transport Provider Limits .............................................................................................................................. 1–116 
TLISTEN............................................................................................................................................................ 1–118 
Completion Information ................................................................................................................................. 1–121 
Return Codes .................................................................................................................................................... 1–122 
Usage Information ........................................................................................................................................... 1–123 
TOPEN............................................................................................................................................................... 1–125 
Completion Information ................................................................................................................................. 1–133 
Return Codes .................................................................................................................................................... 1–134 
Usage Information ........................................................................................................................................... 1–135 
TOPTION .......................................................................................................................................................... 1–136 
Completion Information ................................................................................................................................. 1–141 
Return Codes .................................................................................................................................................... 1–142 
Usage Information ........................................................................................................................................... 1–143 
Transport Provider Options ........................................................................................................................... 1–144 
TCP Provider Session Options ....................................................................................................................... 1–145 
TCP/UDP/RAW Provider Session Options ................................................................................................ 1–147 
TPL ..................................................................................................................................................................... 1–152 
Completion Information ................................................................................................................................. 1–171 
Return Codes .................................................................................................................................................... 1–171 
Usage Information ........................................................................................................................................... 1–172 
TRECV ............................................................................................................................................................... 1–173 
Completion Information ................................................................................................................................. 1–180 
Return Codes .................................................................................................................................................... 1–181 
Usage Information ........................................................................................................................................... 1–182 
TCP Provider Session Options ....................................................................................................................... 1–183 
Return Indicators ............................................................................................................................................. 1–183 
TRECVERR ....................................................................................................................................................... 1–185 
Completion Information ................................................................................................................................. 1–188 
Return Codes .................................................................................................................................................... 1–189 
Usage Information ........................................................................................................................................... 1–190 
TRECVFR .......................................................................................................................................................... 1–190 
Completion Information ................................................................................................................................. 1–196 
Return Codes .................................................................................................................................................... 1–197 
Usage Information ........................................................................................................................................... 1–198 
TREJECT............................................................................................................................................................ 1–200 

vi     Assembler API Programmer Reference 



  

Completion Information.................................................................................................................................. 1–202 
Return Codes .................................................................................................................................................... 1–203 
Usage Information............................................................................................................................................ 1–204 
TRELACK.......................................................................................................................................................... 1–205 
Completion Information.................................................................................................................................. 1–207 
Return Codes .................................................................................................................................................... 1–208 
Usage Information............................................................................................................................................ 1–209 
TRELEASE......................................................................................................................................................... 1–210 
Completion Information.................................................................................................................................. 1–212 
Return Codes .................................................................................................................................................... 1–213 
Usage Information............................................................................................................................................ 1–214 
TRETRACT........................................................................................................................................................ 1–215 
Completion Information.................................................................................................................................. 1–217 
Return Codes .................................................................................................................................................... 1–217 
Usage Information............................................................................................................................................ 1–218 
TSEND ............................................................................................................................................................... 1–219 
Completion Information.................................................................................................................................. 1–225 
Return Codes .................................................................................................................................................... 1–226 
Usage Information............................................................................................................................................ 1–227 
Data Transfer Modes ....................................................................................................................................... 1–230 
TLI Mode ........................................................................................................................................................... 1–230 
Socket Mode...................................................................................................................................................... 1–231 
TSENDTO.......................................................................................................................................................... 1–232 
Completion Information.................................................................................................................................. 1–237 
Return Codes .................................................................................................................................................... 1–237 
Usage Information............................................................................................................................................ 1–238 
TSTATE.............................................................................................................................................................. 1–240 
Completion Information.................................................................................................................................. 1–240 
Return Codes .................................................................................................................................................... 1–241 
Usage Information............................................................................................................................................ 1–242 
TUNBIND.......................................................................................................................................................... 1–246 
Completion Information.................................................................................................................................. 1–248 
Return Codes .................................................................................................................................................... 1–248 
Usage Information............................................................................................................................................ 1–249 
TUSER................................................................................................................................................................ 1–250 

Contents    vii 



  

Completion Information ................................................................................................................................. 1–253 
Return Codes .................................................................................................................................................... 1–254 
Usage Information ........................................................................................................................................... 1–255 

Chapter 2: DNR Directory Services 
Directory Database .............................................................................................................................................. 2–3 
Domain Name System......................................................................................................................................... 2–3 
Local Configuration Data.................................................................................................................................... 2–4 
Syntactic Rules for Names .................................................................................................................................. 2–4 
Locally-Managed Names .................................................................................................................................... 2–4 
Simple Domain Names ....................................................................................................................................... 2–5 
Directory Services Calls ...................................................................................................................................... 2–5 
DIRSRV.................................................................................................................................................................. 2–6 
Completion Information ................................................................................................................................... 2–14 
Return Codes ...................................................................................................................................................... 2–15 
GET-HOST-BYNAME ....................................................................................................................................... 2–16 
Completion Information ................................................................................................................................... 2–22 
Return Codes ...................................................................................................................................................... 2–23 
Usage Information ............................................................................................................................................. 2–24 
GET-HOST-BYVALUE...................................................................................................................................... 2–25 
Completion Information ................................................................................................................................... 2–30 
Return Codes ...................................................................................................................................................... 2–31 
Usage Information ............................................................................................................................................. 2–31 
GET-HOST-BYALIAS........................................................................................................................................ 2–33 
Completion Information ................................................................................................................................... 2–38 
Return Codes ...................................................................................................................................................... 2–39 
Usage Information ............................................................................................................................................. 2–40 
GET-NETWORK-BYNAME ............................................................................................................................. 2–41 
Completion Information ................................................................................................................................... 2–44 
Return Codes ...................................................................................................................................................... 2–45 
GET-NETWORK-BYVALUE............................................................................................................................ 2–46 
Completion Information ................................................................................................................................... 2–49 
Return Codes ...................................................................................................................................................... 2–50 
GET-PROTOCOL-BYNAME ............................................................................................................................ 2–51 
Completion Information ................................................................................................................................... 2–54 
Return Codes ...................................................................................................................................................... 2–55 
GET-PROTOCOL-BYVALUE........................................................................................................................... 2–56 
Completion Information ................................................................................................................................... 2–59 
Return Codes ...................................................................................................................................................... 2–60 
GET-SERVICE-BYNAME ................................................................................................................................. 2–61 

viii     Assembler API Programmer Reference 



  

Completion Information.................................................................................................................................... 2–64 
Return Codes ...................................................................................................................................................... 2–65 
GET-SERVICE-BYVALUE ................................................................................................................................ 2–66 
Completion Information.................................................................................................................................... 2–69 
Return Codes ...................................................................................................................................................... 2–70 
GET-HOSTINFO-BYNAME ............................................................................................................................. 2–71 
Completion Information.................................................................................................................................... 2–76 

 Return Codes ............................................................................................................................................... 2–77 
Usage Information.............................................................................................................................................. 2–78 
GET-HOSTSERV-BYNAME ............................................................................................................................. 2–79 
Completion Information.................................................................................................................................... 2–84 
Return Codes ...................................................................................................................................................... 2–85 
Usage Information.............................................................................................................................................. 2–86 
GET-ROUTE-BYNAME..................................................................................................................................... 2–88 
Completion Information.................................................................................................................................... 2–93 
Return Codes ...................................................................................................................................................... 2–94 
Usage Information.............................................................................................................................................. 2–95 
GET-RPC-BYNAME .......................................................................................................................................... 2–97 
Completion Information.................................................................................................................................. 2–100 
Return Codes .................................................................................................................................................... 2–101 
GET-RPC-BYVALUE ....................................................................................................................................... 2–103 
Completion Information.................................................................................................................................. 2–106 
Return Codes .................................................................................................................................................... 2–106 
PURGE............................................................................................................................................................... 2–108 
Return Codes .................................................................................................................................................... 2–108 

Appendix A: MF Operand Summary 
Macro Instruction Forms Supported by the API.............................................................................................A–1 
MF Operands Supported by API Macro Instructions ....................................................................................A–3 
Short, Long and Extended Parameter List Forms...........................................................................................A–5 
Macro Instruction Rules .....................................................................................................................................A–6 
Internal API Macro Instructions........................................................................................................................A–7 
The APIMZGBL Macro Instruction ..................................................................................................................A–7 
Assembler Format Description..........................................................................................................................A–7 

Appendix B: Macro Instruction Operand Summary 
Information Provided ..........................................................................................................................................B–1 
Integer Notes.........................................................................................................................................................B–2 
Macro Instruction Operands...............................................................................................................................B–3 

Contents    ix 



  

Appendix C: Register Usage Summary 
API Register Usage ............................................................................................................................................. C–3 

Appendix D: Data Structures (Assembler Language) 
Generating Dummy Control Sections .............................................................................................................. D–1 
Data Structure Names ........................................................................................................................................ D–2 
Assembler Language Definitions...................................................................................................................... D–3 
APCB (Application Program Control Block) .................................................................................................. D–3 
APCBXL (APCB Exit List).................................................................................................................................. D–4 
TEM (Transport Endpoint Error Message)...................................................................................................... D–5 
TIB (Transport Service Information Block)...................................................................................................... D–5 
TPA (Transport Protocol Address)................................................................................................................... D–6 
TPL (Transport Service Parameter List)........................................................................................................... D–7 
TPO (Transport Protocol Options) ................................................................................................................. D–12 
TSW – Transport Endpoint State Word ......................................................................................................... D–13 
TUB (Transport Endpoint User Block)........................................................................................................... D–14 
TXL (Transport Endpoint Exit Lis) ................................................................................................................. D–15 
TXP (Transport Endpoint Exit Parameters)................................................................................................... D–16 

Index 

x     Assembler API Programmer Reference 



  

Chapter 

1 
Assembler Language Macro 
Instructions 

 

This chapter provides detailed coding information for the TCPaccess 
Communications Server API assembler macro instructions.  

The following topics are covered in this chapter: 

■  Conventions, Definitions, and Terminology—Discusses the conventions and 
terminology used to describe the macro instructions, and defines the basic 
forms and formats that apply, and defines register usage for the standard 
API calling sequences. 

■  Macro Instructions Descriptions—Provides detailed descriptions of all API 
macro instructions. 

Conventions, Definitions, and Terminology  
Discusses the conventions and terminology used to describe the macro 
instructions, and defines the basic forms and formats that apply, and defines 
register usage for the standard API calling sequences. 

Basic Format of Macro Descriptions  

Each macro instruction is described using the following documentation 
conventions: 

■  A brief introductory statement summarizing macro instruction’s primary use  

■  A detailed assembler format description 

■  A detailed description of each macro instruction operand  

■  A detailed assembler format description, and a detailed description of each 
macro instruction operand, including: 

–  Completion information 

–  A list of return codes presented in tabular format 

–  General usage guidelines  

Assembler Language Macro Instructions    1–1 



Conventions, Definitions, and Terminology 

The basic components of each macro instruction description are described in the 
following topics.  

Assembler Format Description  

The assembler format description is a three-column table that shows how the 
macro instruction should be coded. Because macro instructions are coded in the 
same format as assembler instructions, the three columns correspond to an 
assembler instruction’s name, operation, and operand fields.  

This is how these fields are used: 

Name The macro instruction name provides a label for the macro instruction. The 
name, if used, can be specified as any symbolic name valid in the assembler 
language.  

Operation This field contains the mnemonic operation code of the macro instruction. It is 
always coded exactly as shown.  

Operands The operands provide information required for macro instruction execution. 
Generally, this information is organized into a parameter list by macro 
instruction expansion, and provided to the API during program execution. All of 
the macro instruction’s operands are shown in the operands column of the 
assembler format description.  

The notation used for describing macro instruction operands is similar to that 
used by IBM to describe macro instructions incorporated within their products 
(for example, VTAM macro instructions or MVS supervisor macro instructions). 
This notation is briefly defined in Macro Instruction Operand Notation .  

Syntax Description 

The syntax includes the assembler format, operand name, and description. Every 
operand description starts with a brief explanation of the operand’s function. If 
more than one fixed valued can be supplied with the operand, the operand 
description also explains the effect that each value has on the action performed 
by the macro instruction.  

For TPL-based (Transport Service Parameter List) macro instructions, the same 
operand can be coded on many different macro instructions. In some cases, the 
coding rules and interpretation of the operand are identical. In other cases, the 
coding rules may differ and the interpretation may depend on the context in 
which it is used.  

1–2     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

Note: To avoid unnecessary repetition, the operands that apply to several macro 
instructions are documented in full only for the TPL macro instruction. For other 
macro instructions, either an abbreviated description is given, or only the 
characteristics that apply to the particular macro instruction are described.  

The operand description may include a description of the format in which the 
operand should be coded. This description is provided when the format is an 
exception to these general rules: 

■  When a quantity is indicated, such as a length or integer value, it can be 
coded as any non-relocatable expression that is valid for an A-type address 
constant or a Load Address (LA) assembler instruction, or the number of the 
register (enclosed in parentheses) that contains the value when the macro 
instruction is executed. Register notation is restricted to registers 2-12 when 
specifying a quantity.  

■  When an address is indicated, it can be coded as any relocatable expression 
that is valid for an A-type address constant or a Load Address (LA) 
assembler instruction, or the number of the register (enclosed in parentheses) 
that contains the address when the macro instruction is executed. Register 
notation is restricted to registers 1-12 when specifying the address of a TPL, 
and registers 2-12 for all other address operands.  

Note: The assembler instructions generated to process operands in the macro 
instruction expansion vary depending on the macro form used. This can have an 
effect on the maximum values that can be specified in certain macro instruction 
operands. For more information, refer to the discussion of list, generate, modify 
and execute forms of macro instructions in List, Generate, Modify, and Execute 
Forms . 

Completion Information 

All of the executable macro instructions pass return codes in registers, and most 
indicate status information in various control block fields when they are posted 
complete. Some macro instructions also return results in control block fields or 
storage areas provided by the application program. A description of the status 
information and data returned by the macro instruction follows the operand 
descriptions. This description is in terms of the conditions that exist on return to 
the application program after execution of the macro instruction in synchronous 
mode, or after execution of a TCHECK macro instruction when operating in 
asynchronous mode.  

Assembler Language Macro Instructions    1–3 



Conventions, Definitions, and Terminology 

Return Codes 

A list of all return code values generated by the macro instruction is presented in 
tabular form. The list is organized to show the conditional completion codes 
returned for normally completing macro instructions, and the combinations of 
recovery action codes and specific error codes returned for abnormally 
completing macro instructions.  

All return codes are listed using their symbolic name. The TCPaccess Unprefixed 
Messages and Codes manual contains detailed information on each return code, 
including its symbolic name, the corresponding decimal and hexadecimal values, 
and a detailed explanation of its use and meaning.  

Usage Information  

The usage information describes the macro instruction’s function and use, 
including any important rules that can apply to when and how it may be used. 
Special usage notes that may not have been covered in other sections of the 
macro instruction description are listed here.  

Macro Instruction Operand Notation  

The notational scheme used in the operands column of the assembler format 
description is similar to that used by IBM. This notation shows how, when, and 
where operands can be coded. These notational symbols are never coded in the 
macro instruction:  

■  Uppercase characters must be coded exactly as shown in the operands 
column. Lowercase italicized characters or words represent variables, or 
values that the application programmer must provide.  

■  A vertical bar (|) is the symbol for exclusive or.  

 SYNC | ASYNC means that either SYNC or ASYNC (but not both) should be 
coded.  

■  An underscored value means that if the operand is omitted, the macro 
instruction will be expanded as though the underscored value had been 
coded.  

Note: The underscored value is the default value. 

 In this example, INTERNAL is the default value. If the ECB operand is 
omitted, the assembler assumes ECB=INTERNAL.  
ECB=INTERNAL | event_control_block_addr  

 Default values apply only to declarative macro instructions and to the list 
(MF=L) or generate (MF=G) forms of TPL-based macro instructions.  

1–4     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

For all other macro instructions, as well as the modify (MF=M) or execute 
(MF=E) forms of TPL-based macro instructions, no default values are 
assumed. In this case, only the values specified in the macro instruction itself 
or already contained in the referenced control blocks are used.  

■  Brackets ([ ]) denote optional operands or values. Conversely, the lack of 
brackets indicates that an operand is required. 

 In this example, the positional operand VERBATIM | SUMMARY is 
optional, and the MF operand is mandatory:  

 [VERBATIM | SUMMARY,] MF=(E,tpl_address)  

■  An ellipsis (...) indicates that whatever precedes it (either an operand value 
or an entire operand) can be repeated any number of times.  

 An operand appearing as  
 (data structure name,...)  

 could be coded as (TPL,TIB) if two data structure names are required, or as 
(TPL) or TPL if only one data structure name is required.  

■  Parentheses, equal signs, and commas must be coded exactly as shown, 
subject to the previously described rules.  

Macro Instruction Operand Types  

All macro instruction operands are either keyword or positional operands. Most 
of the API macro instruction operands are keyword operands.  

Keyword Operands 

Keyword operands consist of: 

■  A fixed character string (the operand keyword) 

■  An equal sign (=) 

■  A single or multiple operand value  

The presence of the equal sign distinguishes keywords from positional operands.  

You do not need to code keyword operands in the order shown in the operands 
column of the format description. 

Assembler Language Macro Instructions    1–5 



Conventions, Definitions, and Terminology 

Example A macro instruction having these operands indicated in the operands column  
[,DABUF=user_data_address]  
[,DALEN=user_data_length]  

could be coded as: 

DABUF=BUFFER,DALEN=200  

or  

DALEN=200,DABUF=BUFFER  

Keyword operands must be separated by commas. If a keyword operand is 
omitted, the commas that would have been included with it are also omitted.  

There are a few instances in the API macro instructions where more than one 
value can be coded after the keyword. When this is done, operand sublist 
notation is used.  

The option code operand specified as: 
OPTCD= ([ SHORT | LONG ]  
        [ ,SYNC | ASYNC ]  
        [ ,NEGOT | NONEGOT ]  
        [ ,UNCOND | COND ]  
        [ ,DEBUG | NODEBUG ] )  

could be coded as OPTCD=ASYNC or as OPTCD=(ASYNC) when only one 
option code is used.  

When more than one option code is used, however, the option code names must 
be enclosed in parentheses and separated by commas, in this format: 
OPTCD=(SHORT,ASYNC,NONEGOT,UNCOND,DEBUG)  

If a field name is omitted, the comma that would have been included with it is 
also omitted.  

Omitting the first, third, and fourth option code names in this example results in 
this format:  
OPTCD=(ASYNC,DEBUG)  

1–6     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

Positional Operands 

Positional operands are used to a much lesser extent, and must be coded in the 
exact order shown in the operands column when more than one positional 
operand is shown.  

Positional operands are separated by commas as are all operands, but if you omit 
a positional operand, the surrounding commas must still be coded to indicate its 
absence.  

A macro instruction that has the three positional operands OPTIONS, ADDRESS, 
and LENGTH would be coded as:  
OPTIONS,ADDRESS,LENGTH  

or as if all three are coded: 
,ADDRESS,LENGTH 

if only the last two are coded.  

Note: If the last positional operand or operands are omitted, the trailing comma 
or commas should not be coded. 

Operand Coding Order 

Positional operands are generally coded before any keyword operands, but this 
is not required as long as the previous rules are followed. You can code all 
operands on a single line, separate lines, or a combination of both. When coding 
operands on more than one line, the standard assembler language rules for 
continuation lines apply.  

Assembler Language Macro Instructions    1–7 



Conventions, Definitions, and Terminology 

List, Generate, Modify, and Execute Forms  

The standard form (that is, no MF operand indicated) of a nondeclarative API 
macro instruction expands into both nonexecutable code that represents the 
parameters specified on the macro instruction, and executable code that causes 
the API routines to be entered when the macro instruction is executed. The 
nonexecutable code, called the parameter list, is assembled at the point in the 
application program where the macro instruction appears. For TPL-based macro 
instructions, this parameter list is usually a short form TPL.  

Standard Macro Instruction Disadvantages 

Strict use of standard form macro instructions simplifies the design of an 
application program, but has these major disadvantages: 

■  Because the parameter list is expanded inline with executable code, the 
application is rendered nonreentrant  

■  Parameter lists for TPL-based macro instructions cannot be shared 

Alternative API Macro Instructions 

Alternative forms of the API macro instructions are provided that overcome one 
or both of the disadvantages described in the preceding section. These various 
forms cause the assembler to respond in one of these ways: 

■  Build the parameter list where the macro instruction appears in the 
application program, but assemble no executable code (nonreentrant list 
form)  

■  Assemble code that builds the parameter list at a location indicated at 
execution time, but assembles no executable code to cause the API routines 
to be entered (reentrant list form)  

■  Assemble code that builds the parameter list at a location indicated at 
execution time, and assembles code that causes the appropriate API routine 
to be entered to execute the requested function (generate form)  

■  Assemble code that modifies an existing parameter list at execution time, but 
assembles no executable code to cause the API routines to be entered 
(modify form)  

■  Assemble code that modifies an existing parameter list and causes the 
appropriate API routine to be entered to execute the requested function 
(execute form)  

The following tables summarize the various macro instruction forms.  

1–8     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

Actions Taken for Various Macro Instruction Forms 

The following table lists the actions taken during assembly and execution for 
each form, and how it is specified on the macro instruction. 
 

Actions Taken: Form  

During Assembly During Execution 

Coded With  

Standard Parameter list and code to 
execute function assembled 
where macro instruction appears 
in application program. 

Inline parameter list modified 
and requested function executed. 

No MF operand 
or MF=I  

List  
(Nonreentrant) 

Parameter list assembled where 
macro instruction appears in 
application program. 

No executable code (execute 
form must be used). 

MF=L  

List (Reentrant) Executable code assembled to 
build parameter list at location 
indicated by application 
program. 

Parameter list built, but 
requested function not executed 
(execute form required). 

MF=(L,address) 

Generate Code assembled to build 
parameter list and execute 
requested function. 

Parameter list built at location 
indicated by application program 
and requested function executed. 

MF=(G,address) 

Modify Code assembled to modify 
parameter list indicated by 
application program. 

Existing parameter list modified 
but requested function not 
executed (execute form 
required). 

MF=(M,address) 

Execute Code assembled to modify 
parameter list and execute 
requested function. 

Existing parameter list modified 
and requested function executed. 

MF=(E,address) 

Note: The various alternative forms of the API macro instructions are designated 
with the MF operand. 

Assembler Language Macro Instructions    1–9 



Conventions, Definitions, and Terminology 

Runtime Characteristics of Various Macro Instruction Forms 

The following table lists the runtime characteristics of each form, whether 
defaults apply to unspecified operands, and how operands are generated by the 
assembled code. 
 

Form Runtime Characteristics: Defaults Apply  Operand Type  

 Reentrant Shared TPL   

Standard No No Yes Address Constant 

List (Non-reentrant) No Yes Yes Address Constant 

List (Reentrant) Yes Yes Yes Register Displacement 

Generate Yes No Yes Register Displacement 

Modify Yes Yes No Register Displacement 

Execute Yes Yes No Register Displacement 

The operand types are the same as the ones used in the IBM Macro manual: 

A Address Constant Type 

RX Register Displacement Type 

List Form  

The MF operand for the list form of any non-declarative macro instruction is 
coded in this format:  
MF = { L | ( L,address ) }  

 
L Indicates that this is the list form of the macro instruction.  

■  If the format MF=L is coded, then the parameter list is assembled in 
place 
■  If the format MF=(L,address) is coded, then the parameter list is built 
during program execution at the specified address  
When the list form is used, default values are generated for any 
unspecified macro instruction operands.  

1–10     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

address  Storage location where the parameter list is to be built during program 
execution.  
This area must begin on a fullword boundary and if the application 
program is reentrant, must be in dynamically allocated storage. 
Because the assembler builds executable code that in turn builds the 
parameter list, the macro instruction must be in the executable portion 
of the application program.  

MF = ( G,address )  

 
G Generate form of the macro instruction.  

Default values are generated for any unspecified macro instruction 
operands. 

address Storage location where the parameter list will be built. Generally, this 
is in dynamically allocated storage.  
This area must begin on a fullword boundary and if the application 
program is to be reentrant, must be in dynamically allocated storage. 
Because the assembler builds executable code that in turn builds the 
parameter list, the macro instruction must be in the executable portion 
of the application program. After the parameter list is built, the 
requested function executes.  

Modify Form  

The MF operand for the modify form of any non-declarative macro instruction is 
coded in this format: 
MF=(M,address) 

 
M Modify form of the macro instruction. 

 Default values are not generated for any unspecified macro instruction 
operands.  

address Storage location of an existing parameter list that will be modified.  
Code is assembled to modify those parameters corresponding to 
operands specified on the macro instruction. If an operand is not 
specified, the parameter is not modified and no default value is 
assumed.  

The modify form of a macro instruction lets the application program modify a 
parameter list after it is built and before it is reused to execute another transport 
function. However, the parameter list cannot be expanded. If the parameter list is 
a short form TPL and the macro instruction attempts to modify a parameter 
beyond the range of the parameter list, execution of the macro instruction is 
terminated with a general return code of eight in register 15.  

Assembler Language Macro Instructions    1–11 



Conventions, Definitions, and Terminology 

Execute Form  

The MF operand for the execute form of any non-declarative macro instruction is 
coded in this format:  
MF = ( E,address )  

 
E Execute form of the macro instruction.  

Default values are not generated for any unspecified macro instruction 
operands.  

address Storage location of an existing parameter list to be modified. Code is 
assembled to modify those parameters corresponding to operands 
specified on the macro instruction.  
If an operand is not specified, the parameter is not modified and no 
default value is assumed. After the parameter list is modified, the 
requested function executes.  

For TPL-based macro instructions, the address indicated with the MF operand is 
the TPL itself. As an alternative to the execute form of the MF operand, 
TPL=address can be specified. In other words, TPL=address is equivalent to 
specifying MF=(E,address). This alternative is provided for VTAM programmers 
who may prefer the similarity to the RPL operand used in VTAM macro 
instructions.  

Note: The TPL and MF operands must not be specified together.  

Optional and Required Operands  

The assembler format description shows most macro instruction operands as 
being optional. However, whether or not an operand is optional depends on the 
form of macro instruction used. Execute (MF=E) and modify (MF=M) forms 
update an existing parameter list, and therefore, all operands except the address 
of the parameter list itself are optional. The list forms (MF=L) assume that the 
parameter list may be updated later when it is executed with the execute form, 
and do not require all operands to be specified when the list is generated. Only 
the standard (MF=I) and generate (MF=G) forms require certain operands to be 
specified at assembly time, and even these are limited.  

Since all API service functions (except TOPEN) require a valid endpoint 
identifier, the EP operand must be coded on the standard and generate forms of 
macro instructions.  

1–12     Assembler API Programmer Reference 



Conventions, Definitions, and Terminology 

The fact that an operand is optional for a given instance of a macro instruction 
does not mean the corresponding parameter is optional for the request. It is the 
responsibility of the application program to make sure that all required 
parameters are included in the parameter list when it is executed. The API does 
extensive checking of the parameter list, and terminates processing of a request if 
any required parameters are missing.  

Default and Maximum Values  

The default values assumed by a macro instruction for unspecified operands 
only apply to the standard, list, and generate forms. In this case, the macro 
instruction is expanded as if all unspecified operands were coded with their 
default values. For modify and execute forms, only operands that are specified 
are modified. If an operand is not specified, the value stored in the parameter list 
is used during the subsequent execution of the requested function.  

The method used to store the operand value varies depending on the form used. 
When an inline parameter list is specified with the standard and nonreentrant list 
forms, A-type address constants are generally expanded which generate the 
operand values. After assembly, the operand values are contained at the proper 
locations within the parameter list.  

For all other forms, and when register notation is not specified, a Load (L) or 
Load Address (LA) assembler instruction is usually expanded to load the value 
into register 14 or 15. The resulting value is stored at the proper location in the 
parameter list.  

The use of a load address instruction has implications for the maximum value 
that can be specified using the latter forms. Address values are limited to the size 
of an address in the current addressing mode (24 or 31 bits), and quantity values 
are limited to 12 bits (4,095 decimal) unless an index or base register is specified, 
in which case it is limited to the size of an address. There is no restriction when 
register notation is used.  

If LENGTH is an operand with an integer value, then the LENGTH=number 
argument is limited to a 12-bit value, the LENGTH=displacement(index,base) 
argument is limited to a 24-bit or 31-bit value, and the LENGTH=(register) 
argument can be a 32-bit value. 

Assembler Language Macro Instructions    1–13 



Conventions, Definitions, and Terminology 

Rules for Loading 
Operand Values 

Whether a Load (L) or Load Address (LA) instruction is used to load an 
operand value depends on the nature of the operand.  

The following rules apply:  

■  If the operand is a simple integer value, or quantity (for example, the length 
or size of some object), it is loaded with a Load Address (LA) instruction. 

■  If the operand value is the address of some object, and the object itself can be 
generated at assembly time in static storage (for example, an ECB address, 
the address of an exit routine, or a storage area containing a protocol 
address), it is loaded with a Load Address (LA) instruction. 

■  All other operand values (for example, endpoint identifiers, TCB or ASCB 
addresses, and sequence numbers returned by the API) are loaded with a 
Load (L) instruction. These are generally values acquired from some other 
source.  

The appendix, “Macro Instruction Operand Summary” lists the operand formats 
for all API macro instructions and the default values that apply when operand 
values are not specified.  

Linkage Conventions  

TPL-based macro instructions (standard, generate, and execute forms) all use the 
same conventions to call the API routines.  

Register Contents on Routine Entry 

On entry to the API routine, registers are set as shown in register contents on 
routine entry. 
 
R0 Function code. 

R1 Address of the parameter list (TPL). 

R2-R12 Unmodified application program registers. 

R13 Address of 18-word register save area. 

R14 Address of the next sequential instruction in the application program. 

R15 The API entry point address. 

1–14     Assembler API Programmer Reference 



Macro Instructions Descriptions 

Register Contents on Return 

On return from the API routine, the registers are set as shown in Register 
Contents on Return. 
 
R0 Recovery action or conditional completion code. 

R1 Address of parameter list (TPL). 

R2 - R12 Unmodified application program registers. 

R13 Address of 18-word register save area. 

R14 Address of the next sequential instruction in the application program. 

R15 General return code (zero if successful). 

The function code passed in register zero can be negated to indicate some 
function-specific option. The values returned in register zero and 15 can be 
modified by the SYNAD or LERAD exit routine if the request completed 
abnormally. The appendix “Register Usage Summary” summarizes register 
usage conventions employed by the API.  

Macro Instructions Descriptions 
This section provides detailed descriptions of all API macro instructions, 
arranged in alphabetical order.  

Each macro instruction description includes this information: 

■  The name of the macro instruction  

■  A brief statement of its function and use 

■  The assembler format description  

■  A detailed description of each operand 

■  A description of completion information returned 

■  A table of return codes 

■  General usage information 

It is assumed that you are familiar with the API concepts and facilities presented 
in TCPaccess Assembler API Concepts. 

Assembler Language Macro Instructions    1–15 



ACLOSE 

ACLOSE 
Terminate Session with the API Subsystem—The ACLOSE macro instruction is 
used to terminate a session between the application program and the API. The 
APCB used to establish the session is the sole operand of the ACLOSE macro 
instruction.  
[ symbol ] ACLOSE APCB_address 

 
APCB_address Address of an opened APCB (Application Program Control Block) 

that defines the session with the API.  
Unless supplied in a general register, the address of the APCB is 
loaded into register one using a Load Address (LA) instruction. If 
register notation is specified, the address of the APCB can be 
contained in any one of the general registers 1-12.  
Only one APCB can be closed with the ACLOSE macro 
instruction. An invalid or corrupted value causes unpredictable 
results. 
 Default: None (must be specified). 

Completion Information 

After the ACLOSE macro instruction completes successfully, the APCB is closed 
and the session established when the APCB was opened is terminated. Fields 
modified by the API when the APCB was opened are returned to their original 
values, and any resources allocated by the API on behalf of the transport user are 
released. In particular, any transport endpoints associated with the APCB are 
closed. If ACLOSE completes unsuccessfully, the session is not terminated.  

When control is returned to the next sequential instruction following the 
ACLOSE macro instruction, successful completion is indicated by a return code 
of zero in register 15, and an error code of zero in register zero. The error code 
field in the APCB is also set to zero. If the ACLOSE macro instruction is 
unsuccessful, an error code is returned in register zero, and in most cases, is also 
stored in the APCB.  

1–16     Assembler API Programmer Reference 



ACLOSE 

Unsuccessful completion is indicated by one of these nonzero return codes. 
 

4 (X'04') The APCB was already closed.  
The error code in register zero is set to APCBECLS, and the APCB is 
unmodified. 

12 (X'0C') The ACLOSE macro instruction failed and the error is permanent.  
The error code returned in register zero is also stored in the APCB, and 
indicates the reason for the failure. The permanent error flag is not set in 
the APCB.  

16 (X'10') A fatal error occurred and the APCB could not be closed.  
An error code is returned in register zero, but the error code field in the 
APCB is not changed. This return code is generally the result of an 
invalid APCB. 

The value returned in register zero indicates the nature of the error encountered 
by the ACLOSE macro instruction. 

Return Codes  

If the APCB was determined to be valid, was not already closed and was not 
busy, the API also returns this value in the APCBERRC field of the APCB. An 
APCB is considered busy if it is in the process of being opened or closed by 
another task. The following table lists these error codes, which are defined in 
more detail in the TCPaccess Unprefixed Messages and Codes manual. 
 

Return Code (Register 15)  Specific Error Code (Register 0) 

0 (X'00') 0    

4 (X'04') APCBECLS    

12 (X'0C') APCBEPRB 
APCBETRV  

APCBELER 
APCBEENV 

APCBEAMD 
APCBEEND 

16 (X'10') APCBELER  APCBEVCK APCBEBSY 

Assembler Language Macro Instructions    1–17 



AOPEN 

Usage Information 

The ACLOSE macro instruction closes (or deactivates) an APCB and terminates 
the session established when the APCB was opened.  

The ACLOSE macro instruction:  

■  Closes any endpoints opened by the transport user 

■  Releases all resources associated with the APCB 

■  Prevents the opening of any more endpoints by the transport user 

Note: Fields within the APCB that were filled in by the API when the APCB was 
opened are reset to their original value, and the APCB should not be referenced 
unless reopened by another AOPEN macro instruction.  

The ACLOSE macro instruction must be issued in the mainline program. That is, 
the ACLOSE macro instruction must be executed from a PRB, and no IRBs or 
SVRBs can exist in the current RB chain. The addressing mode in effect must also 
be consistent with the APCB when it was opened. If the APCB was opened in 
31-bit mode, and RMODE=ANY was coded on the APCB (the default), the APCB 
must also be closed in 31-bit mode. There is only one form of the ACLOSE macro 
instruction, and its expansion is always reentrant. If the task that opened an 
APCB terminates before closing the APCB, an ACLOSE is issued by the API task 
termination exit. 

AOPEN 
Establish Session with the API Subsystem—The AOPEN macro instruction 
establishes a session between the application program and the API. Parameters 
describing the application program, and specifying the access method to use, are 
provided in an APCB.  

The address of the APCB is the sole operand of the AOPEN macro instruction.  
[ symbol ] AOPEN APCB_address 

     
APCB_address The APCB to associate with the transport user issuing the AOPEN macro 

instruction. Unless supplied in a general register, the address of the APCB 
is loaded into register one using a Load Address (LA) instruction.  
If register notation is specified, the address of the APCB can be contained 
in any one of the general registers 1-12. Only one APCB can be opened 
with the AOPEN macro instruction.  
Default: None (must be specified). 

1–18     Assembler API Programmer Reference 



AOPEN 

Completion Information 

After the AOPEN macro instruction completes successfully, the APCB is 
initialized and a session is established with the API. Certain fields within the 
APCB are modified during AOPEN processing to reference data areas used by 
the API. The application program should not modify any information within the 
APCB while it is opened. These fields are restored to their original values when 
the APCB is closed.  

When control is returned to the next sequential instruction following the AOPEN 
macro instruction, successful completion is indicated by a return code of zero in 
register 15, and an error code of zero in register zero. The error code field in the 
APCB is also set to zero. 

If the AOPEN macro instruction completes unsuccessfully, an error code is 
returned in register zero, and in most cases, is also stored in the APCB. 
Unsuccessful completion is indicated by one of these nonzero return codes. 
 

4 (X'04') The APCB was already opened. The error code in register zero is set 
to APCBEOPN, and the APCB is not modified.  

8 (X'08') The AOPEN macro instruction failed because of some temporary 
condition. The error code returned in register zero is also stored in the 
APCB, and indicates the reason for the failure.  
Retry the AOPEN macro instruction later.  

12 (X'0C') The AOPEN macro instruction failed and the error is permanent. The 
error code returned in register zero is stored in the APCB and 
indicates the reason for the failure.  
The permanent error flag is also set in the APCB, and must be cleared 
before you can use the APCB with another AOPEN macro instruction. 

16 (X'10') A fatal error occurred and the APCB could not be opened. An error 
code is returned in register zero, but the error code field in the APCB 
is unchanged.  
This return code is generally the result of an invalid APCB.  

The value returned in register zero indicates the nature of the error encountered 
by the AOPEN macro instruction. If the APCB is valid, not already opened, and 
not busy or flagged with a permanent error, the API returns this value in the 
APCBERRC field of the APCB.  

Assembler Language Macro Instructions    1–19 



AOPEN 

The following table lists these error codes. They are defined in more detail in the 
TCPaccess Unprefixed Messages and Codes. 
 

Return 
Code 

(Register 
15) 

Specific Error Code (Register Zero) 

0 (X'00') 0    

4 (X'04') APCBEOPN    

8 (X'08') APCBERDY  APCBECVT  

12 (X'0C') APCBEPRB  
APCBECFG 
APCBESTP 
APCBEOPT  

APCBELER 
APCBEVCK 
APCBEDRA 
APCBEENV 

APCBEACT 
APCBEBEG 
APCBEVER 
APCBEDUP 

16 (X'10') APCBELER 
APCBEBSY 

APCBEVCK APCBEPER 

Usage Information 

The AOPEN macro instruction opens (or activates) an APCB, and establishes a 
session between the application program and the API. The APCB defines a 
specific transport user (that is, the issuing task) and is used to associate 
subsequent service requests with this transport user. The APCB also serves as an 
anchor for the API data structures and transfer vectors required for subsequent 
requests execution.  

When the AOPEN macro instruction completes successfully, fields within the 
APCB contain information stored by the API. This information is used to process 
future service requests and should not be modified by the application program 
while the APCB is open. When the APCB is closed, these fields are returned to 
their original, pre-opened condition. Modification of any of these fields while the 
APCB is open causes unpredictable results.  

The API runs as a separate job in its own address space. Because an application 
program can be started before the API, an application program may issue an 
AOPEN macro instruction before the API is active. In this case, the AOPEN fails, 
and the application program is informed that the API is inactive. 

1–20     Assembler API Programmer Reference 



AOPEN 

The following possibilities exist, each of which is indicated by a separate error 
code: 

■  The API subsystem was not configured in the MVS operating system, 
because either it is not yet installed, or it has not been activated since the last 
IPL. 

■  The API subsystem is configured, but is not active. This is considered a 
permanent error, and the application programmer should check with the 
system operator to determine why the API is not active.  

■  The API subsystem is active, but has not completed initialization, and is not 
ready to service requests. This is considered a temporary error; the AOPEN 
macro instruction can be retried after some delay. 

■  The API subsystem is ready, but the access method interface has not 
completed initialization. This error is similar to the previous error and 
should be retried after some delay.  

 The addressing mode in effect at the time the AOPEN macro instruction is 
executed determines the residency mode of data areas allocated by the API. 
The location of the APCB must also be consistent with the current addressing 
mode.  

■  If the addressing mode is 24-bit, all dynamic storage is allocated with 
LOC=BELOW, and the APCB must reside below 16 MB. Future service 
requests can then be executed in any addressing mode. 

■  If the addressing mode is 31-bit, all storage is allocated with LOC=ANY, and 
all future service requests must be issued in 31-bit addressing mode. The 
APCB can reside above or below 16 MB.  

Note: The RMODE parameter on the APCB can be used to force allocation below 
16 MB, thus allowing the APCB to be opened in 31-bit mode, and future requests 
to be issued in 24-bit mode. 

The AOPEN macro instruction must be issued in the mainline program (that is, 
the AOPEN macro instruction must be executed from a PRB, and no IRBs or 
SVRBs can exist in the current RB chain).  

There is no limit on the: 

■  Number of operand APCBs for an address 

■  Number of tasks per address space that can have currently-opened APCBs 

Each APCB defines a different transport user.  

There is only one form of the AOPEN macro instruction, and its expansion is 
always reentrant. However, since AOPEN modifies the APCB, the APCB may 
need to be moved to dynamically allocated storage before AOPEN is executed if 
the application program is to be reentrant. 

Assembler Language Macro Instructions    1–21 



APCB 

APCB  
Generate an Application Program Control Block—The APCB macro instruction 
is used to generate an Application Program Control Block (APCB). The APCB 
identifies a transport user, and contains information that is used to service 
requests issued by the transport user. The address of the APCB is supplied as an 
operand of an AOPEN and ACLOSE macro instruction. The address of an 
opened APCB must also be provided whenever a new transport endpoint is 
created.  
[ symbol ] APCB [ AM = TLI ] 
                [ ,EXLST = exit_list_address ] 
                [ ,APPLID = application_name ] 
                [ ,PASSWD =application_password ] 
                [ ,SYSID = TCPaccess_API_subsys_name ] 
                [ ,ENVIRO = ASM | IBMC | SASC ] 
                [ ,ACNTX = application_level context ] 
                [ ,ECNTX =environment_level_context ] 
                [ ,OPTCD = ( [ TRACE | NOTRACE ] 
                             [ ,AUTHEXIT | NOAUTHEXIT ] ) ] 
                [ ,RMODE=24 | ANY ] 
                [ ,MF = L | DSECT ] 

  
AM = TLI Access method used by the application program. TLI must be coded as 

shown when using the transport layer interface.  
Default: TLI (Transport Layer Interface). 

EXLST = exit_list_address  Address of an exit list to associate with the APCB. The exit list contains 
addresses of user exit routines to be entered when certain events occur. The 
exit list can be generated by the TEXLST macro instruction, and should 
specify AOPEN, indicating that the exit list will be linked to the transport 
user via AOPEN.  
An exit list identified by the APCB applies to all endpoints opened by the 
transport user. You can provide a separate exit list for each endpoint by 
identifying the exit list with TOPEN. The same exit list can be referenced by 
more than one APCB.  
If no exit list is specified, the application program cannot receive 
asynchronous notification when the corresponding events occur. In this 
case, the application program must process such events synchronously by 
analyzing the return code at the completion of each service function.  
Default: Zero (no APCB exit list). 

1–22     Assembler API Programmer Reference 



APCB 

APPLID = application_name  Name of the application program. The name must be coded as an 
alphanumeric string up to eight characters in length. If the name is longer 
than eight characters, it is truncated to eight bytes. The application name is 
used in combination with the password to authorize access to the API 
services. If a user ID is not provided when endpoints are opened, the 
application name is also used to authorize endpoint services. 
If no name is provided, a null string of eight zero bytes is generated. If this 
field is still set to zero when the APCB is opened, the API substitutes the 
step name from the TIOT. This is either the procedure step name if the job 
step was invoked via a procedure or the job step name otherwise.  
Default: Null name (use TIOT step name). 

PASSWD = application_password  Password associated with the application name. The password may be any 
alphanumeric string up to eight characters in length. If the password is 
longer than eight characters, it is truncated to eight bytes. If the password 
operand is not coded, a null password is generated consisting of eight zero 
bytes. 
Default: Null password (no password provided).  

SYSID =  
TCPaccess_API_subsys_name  

The TCPaccess API runs as an MVS subsystem, and is initially located via 
its subsystem name when the APCB is opened with an AOPEN macro 
instruction. This subsystem name is specified when the API is installed. If 
the subsystem name defined during installation does not agree with the 
default name used by the APCB macro instruction or if more than one 
instance of the API can run on the local system, you can specify the 
subsystem name using this operand. 
The subsystem name is an alphanumeric string up to four characters in 
length. If the subsystem name you specify is longer than four characters, it 
is truncated to four bytes. If no subsystem name is coded, the default name 
is used.  
Default: ACSS.  

ENVIRO = ASM | IBMC | 
SASC  

Runtime environment for the application program. Generally, the runtime 
environment is assembler language, and ASM should be coded.  
IBMC and SASC are reserved for the API library routines that execute in the 
runtime environment of the IBM and SAS/C compilers, respectively. This 
operand selects special interface exits that initialize and terminate the 
runtime environment, and that schedule user exit routines written in a 
higher-level language.  
Normal application programs should either leave this operand unspecified, 
or always specify ENVIRO=ASM. Specifying other environments yields 
unpredictable, and unsatisfactory, results.  
Default: ASM (assembler language environment).  

Assembler Language Macro Instructions    1–23 



APCB 

ACNTX= 
application_level_context  

An arbitrary fullword of user context associated with the application 
program. This information is not interpreted by the API, and is saved in the 
APCB, and included in the parameter list provided to exit routines.  
This information can be used by the application program to derive 
application-level context associated with the transport user during exit 
processing. Any value that can be generated as an A-type address constant 
can be specified.  
Note: The value stored in the APCB is moved to another data area after the 
APCB is opened. If the application program changes the value in the APCB 
after AOPEN is executed, it is not reflected in the value passed to the exit 
routine.  
Default: Zero (no application-level context specified).  

ECNTX = 
environment_level_context  

An arbitrary fullword of user context associated with the runtime 
environment of the application program.  
This information is not interpreted by the API, and is saved in the APCB, 
and included in the parameter list provided to exit routines. Any value that 
can be generated as an A-type address constant can be specified. 
 
Note: The value stored in the APCB is moved to another data area after the 
APCB is opened. If the application program changes the value in the APCB 
after AOPEN is executed, it is not reflected in the value passed to the exit 
routine.  
This information is intended for use by built-in interface routines that map 
the assembler language runtime environment of the API into the runtime 
environment of the application program. 
If ENVIRO=ASM is coded, this field can be used for any purpose by the 
application program.  
If ENVIRO=ASM is not coded, this field is reserved for use by the runtime 
environment exits.  
Default: Zero (no environment-level context specified).  

1–24     Assembler API Programmer Reference 



APCB 

OPTCD = TRACE | NOTRACE  Indicates whether service requests issued by the transport user associated 
with this APCB are traced by the API. 
OPTCD=TRACE events associated with endpoints linked to this APCB are 
traced. 
If OPTCD=TRACE is selected when the APCB is opened, a storage area is 
allocated within the application program’s address space for tracing 
endpoint events. All events associated with a given transport user are co-
mingled in time-order sequence. 
The following events are traced:  
■  Transport service function invoked  
■  Service request rejected  
■  WAIT SVC issued by TCHECK  
■  Service request completed  
■  Asynchronous completion exit entered  
■  Asynchronous event exit entered  
■  Synchronous error exit entered 
■  TCHECK control function completed  
■  TERROR control function completed  
■  TSTATE control function completed 
The occurrence of an event is recorded by an eight-word trace entry stored 
in a circular trace table. The information saved in each trace entry depends 
on the type of event.   

 Exit events save the first six words of the TXP associated with the exit. All 
other events save the first five words of the TPL associated with the event, 
and its address. All events contain a time-stamp generated by a store clock 
(STCK) instruction. 

 OPTCD=NOTRACE tracing is disabled for this transport user. 
Default: TRACE (trace endpoint events). 

OPTCD = AUTHEXIT | 
NOAUTHEXIT 

Indicates if exits associated with endpoints or with the API session are to be 
driven in fast-path, or authorized, mode. 
OPTCD=AUTHEXIT exits are given control in SRB mode, key zero, and 
supervisor state. 
OPTCD=NOAUTHEXIT exits are driven in IRB or PRB mode, caller key, 
and problem state. 
Default: NOAUTHEXIT. 

Assembler Language Macro Instructions    1–25 



APCB 

RMODE = 24 | ANY  Residency mode of any storage allocated in the application program’s 
address space by the API. 
RMODE=24 storage is always allocated below 16 MB. Local data areas used 
by the API are always allocated below 16 MB and are always addressable 
no matter what addressing mode is in effect. 
 RMODE=ANY storage is allocation in accordance with the current 
addressing mode. Storage is allocated above 16 MB if the APCB is opened in 
31-bit mode and below 16 MB otherwise. Therefore, the API service 
functions associated with an APCB opened in 31-bit mode and 
RMODE=ANY must be executed in 31-bit mode.  
The addressing mode of all subsequent service requests associated with this 
APCB must be consistent with the addressing mode in effect when the 
APCB is opened, as well as the RMODE parameter of the APCB itself.  
The application program is also responsible for assuring that the residency 
mode of data areas it manages (for example, the APCB and TPLs) is 
compatible with the addressing mode. The API performs consistency checks 
on the addressing mode whenever a service request is issued. However, it is 
possible that unpredictable results can occur before the API has had an 
opportunity to perform this check. 
Default: ANY (allocate storage above 16 MB).  

MF = L | DSECT  Macro expansion type. 
MF=L APCB is generated inline with the APCB macro instruction.  
MF=DSECT A DSECT that maps the fields of the APCB is generated.  
There is no remote list form of the APCB macro instruction. If the 
application program is reentrant and must generate an APCB in dynamic 
storage, it should allocate the storage area and move a copy of the APCB 
into it. The skeleton APCB can be generated in static storage as long as it is 
not opened with the AOPEN macro instruction. 
Default: MF=L (inline list). 

1–26     Assembler API Programmer Reference 



APCB 

Completion Information 

The APCB macro instruction is declarative and generates no executable 
instructions. Refer to the description of the AOPEN and ACLOSE macro 
instructions for completion information.  

Return Codes 

The APCB contains fields in which return codes are stored during AOPEN and 
ACLOSE processing. If either of these macro instructions complete with an error, 
error information generally is returned in these fields. APCBERRC contains a 
one-byte specific error code, and APCBDGNC contains a two-byte diagnostic 
code. The codes that can be returned in these fields are defined in the TCPaccess 
Unprefixed Messages and Codes manual.  

Usage Information 

Each application program must define a transport user before it can get the 
services of a transport provider. A transport user is defined by creating an APCB 
containing information required by the API and then activating the APCB by 
referencing it in an AOPEN macro instruction. The task that issues the AOPEN 
macro instruction becomes permanently associated with the APCB and is 
considered the transport user.  

Opening the APCB causes the API to create the necessary infrastructure for 
servicing the transport user, and pointers to various components of the 
infrastructure are stored in the APCB. This information must not be modified 
while the APCB is opened. The APCB serves as an anchor for all information 
associated with the transport user and the address of this APCB must be 
provided each time the transport user opens a new endpoint.  

An application program can have more than one transport user, and each 
transport user must be associated with a unique APCB. If two instances of the 
API happen to be running on the local system (each with a different subsystem 
name), and an APCB is opened by the same task for both, the transport user 
defined by one APCB is completely independent of the other.  

The APCB can also be thought of as defining a session between the application 
program and the API. The AOPEN macro instruction establishes the session, and 
the ACLOSE macro instruction terminates the session. Once a session is 
established, the transport user can request services such as opening endpoints, 
binding protocol addresses, and transferring data. When the APCB is closed, the 
session is terminated and such requests can no longer be made. Any endpoints 
opened by the transport user are closed and all resources allocated to the 
transport user are released.  

Assembler Language Macro Instructions    1–27 



TACCEPT 

The APCB serves as an anchor for the API data areas and contains information 
about the transport user. An exit list of routines to enter when certain events 
occur is also linked to the APCB. An arbitrary word of user context stored in the 
APCB is provided with each entry to any of these exit routines. This information 
is not examined or interpreted by the API.  

The APCB can reside in 24-bit or 31-bit storage. The application program is 
required to assure that the location of the APCB and any data areas it references 
is consistent with current addressing mode. In particular, neither the executable 
instructions expanded by API macro instructions nor the interface routines they 
call, change the current addressing mode, and operate in the addressing mode of 
the caller. It is generally advisable that all future requests made to the API be 
issued in the same addressing mode in effect when the APCB is opened. 

TACCEPT  
Accept a Connection Request—When a connect indication is received at an 
endpoint with a TLISTEN macro instruction, the TACCEPT macro instruction is 
used to accept the connection request, and to establish a connection with the 
remote transport user. The connection can be established to a new endpoint, or to 
the endpoint on which the TLISTEN was executed.  
[ symbol ] TACCEPT [ EP = endpoint_id ] 
                   [ ,NEWEP = new_endpoint_id ] 
                   [ ,SEQNO =sequence_number ]  
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND] 
                   [ ,SYNC | ASYNC ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E ,[ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TACCEPT macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid 
or corrupted value causes unpredictable results. 

Default: Zero (no endpoint specified). 

1–28     Assembler API Programmer Reference 



TACCEPT 

NEWEP = new_endpoint_id  Endpoint at which the accepted connection is established.  

The operand value is the endpoint identifier returned by a TOPEN 
macro. A zero value indicates the listening endpoint (that is, the 
endpoint at which the connect indication arrived).  

The application program can accept a connection on the listening 
endpoint or a newly created endpoint. If accepted on the listening 
endpoint, the endpoint must not have any pending connect 
indications other than the one being accepted. The endpoint must be 
in the connect-indication-pending state (TSINCONN), and have only 
one indication pending in its queue. Otherwise, the TACCEPT macro 
instruction is completed abnormally.  

If the connection is accepted on a new endpoint, the endpoint must be 
in the disabled state (TSDSABLD), and must have been opened by the 
task that opened the listening endpoint. The local protocol address 
bound to the endpoint can be the same address bound to the listening 
endpoint, or different. Connecting to an endpoint with a different 
protocol address may not be supported by all transport providers. 

Default: Zero (connection established to listening endpoint) . 

SEQNO = sequence_number  Connect indication to accept. The value specified must be returned by 
a TLISTEN macro instruction. The transport provider uses this value 
to identify a connect indication pending for this endpoint which has 
not yet been accepted or rejected.  

Default: Zero (most likely an invalid sequence number).  

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

Assembler Language Macro Instructions    1–29 



TACCEPT 

OPTCD = SYNC | ASYNC  Indicates the synchronization mode to use when executing the 
TACCEPT macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the requested 
macro instruction is complete. A TCHECK macro instruction should 
not be executed since check processing is automatically performed by 
the API. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TACCEPT request. 
The application program is responsible for issuing the TCHECK 
macro instruction. 

Default: SYNC (synchronous mode).  

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API 
when the TACCEPT macro instruction associated with this TPL has 
completed. The ECB can be any fullword of storage aligned on a 
fullword boundary.  

If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

EXIT = 
tpl_exit_routine_address  

Address of an exit routine to schedule when the TACCEPT macro 
instruction associated with this TPL has completed. The TPL exit 
routine is scheduled only if asynchronous mode was specified. In 
synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

1–30     Assembler API Programmer Reference 



TACCEPT 

MF = ( I | L | G | M | E,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TACCEPT 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the standard 
form is used.  

See List, Generate, Modify, and Execute Forms for valid combinations 
of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TACCEPT macro instruction completes normally (or conditionally) once the 
accepted connection is established.  

■  If the connection is accepted to itself, the state of the endpoint is changed 
from connect-indication-pending (TSINCONN) to connected (TSCONNCT), 
and the endpoint is ready to send and receive data. 

■  If the connection is accepted to a new endpoint, the state of the new endpoint 
is changed from disabled (TSDSABLD) to connected (TSCONNCT), and the 
old endpoint can continue receiving connect indications.  

■  If only one connect indication was pending, the state of the old endpoint is 
changed from connect-indication-pending (TSINCONN) to enable 
(TSENABLD). Otherwise, the state of the endpoint is unchanged.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. The TPL return code field is set accordingly. No other information 
is returned. 

If the TACCEPT macro instruction completes abnormally, no connection is 
established, and the connect indication remains queued. If the connection request 
was abandoned via a disconnect, the indication is removed from the queue when 
the TCLEAR macro instruction executes. The state of the endpoint is unchanged. 
The general return code in register 15, and recovery action code in register zero, 
indicate the nature of the failure. The TPL return code field may also contain a 
specific error code that identifies a particular error.  

Assembler Language Macro Instructions    1–31 



TACCEPT 

Return Codes 

The following table lists the symbolic names for the TACCEPT return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery Action 
Code 
(Register 0)  

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY  TCOKAY  

TRFAILED TAEXCPTN TENONEGO 

 TAINTEG TEPROTO TEDISCON 

 TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TESTOP TETERM TEUNSUPO 
TEUNSUPF TEUNAUTH TERSOURC 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT TEBDDATA TEBDOPTN 
TEBDSQNO TEBDEPID 

 TAPROCED TEAMODE TESTATE TEINCMPL 
TENOCONN TEINDICA TEACCEPT 
TEOWNER 

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL has 
been corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address 
space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

1–32     Assembler API Programmer Reference 



TACCEPT 

Usage Information 

The TACCEPT macro accepts a pending connect indication that was received at 
an endpoint. A sequence number returned by a previous TLISTEN macro 
instruction identifies which connect indication will be accepted in the event more 
than one is pending. On the successful completion of this request, the specified 
endpoint is connected, and is ready to send and receive data.  

The connection can be established to the endpoint at which the connect 
indication was received, or established to a new endpoint. If established to the 
endpoint that issued the corresponding TLISTEN macro instruction, no more 
than one connect indication can be pending. The maximum number of pending 
connect indications is limited to the queue length specified when the endpoint 
was enabled (see TBIND). Once the connection is established, the listening 
endpoint becomes busy, and does not generate any additional connect 
indications. However, connection requests arriving at the endpoint may continue 
to be queued by the transport provider.  

Application programs that establish a connection to the listening endpoint 
operate as single-threaded servers. Multithreaded servers, on the other hand, 
must leave the endpoint available to receive additional connect indications. In 
this case, a new endpoint must be created for each connection that is established. 
The endpoint must exist in the same communications domain, and use the same 
type of service as the listening endpoint. The local protocol address bound to the 
new endpoint is generally the same as the listening endpoint.  

The endpoint identifier provided with the TACCEPT macro instruction identifies 
the endpoint to which the connection is established. If the value specified for 
NEWEP is zero, the connection is established to the listening endpoint (if 
possible). If the endpoint ID identifies a different endpoint, the endpoint must 
have been opened by the same task that opened the listening endpoint, and must 
be in the disabled (TSDSABLD) state.  

The TACCEPT macro instruction is normally used to establish connections to 
endpoints operating in connection mode. However, if the endpoint is operating 
in connectionless mode, and was enabled to simulate connect indications, the 
TACCEPT macro instruction can be used to create an association with a transport 
user whose protocol address was returned with the TLISTEN macro instruction. 
See Assembler API Concepts for a discussion on associations in connectionless 
mode. 

Assembler Language Macro Instructions    1–33 



TADDR 

TADDR 
Retrieve Local or Remote Protocol Address—The local protocol address bound 
to an endpoint, or the remote protocol address of a connected (or associated) 
transport user, can be retrieved using the TADDR macro instruction.  
[ symbol ] TADDR [ EP = endpoint_id ] 
                 [ ,ADLEN = protocol_address_length ] 
                 [ ,ADBUF = protocol_address_address ] 
                 [ ,ADALET = protocol_address_alet ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TRUNC | NOTRUNC ] 
                              [ ,LOCAL | REMOTE ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E, [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TADDR macro instruction executes.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An 
invalid or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address storage area identified by 
the ADBUF operand.  

The length is updated when the request is completed to reflect the 
actual length of the protocol address returned. If the length is zero, 
the TADDR macro instruction is abnormally completed.  

Default: Zero (return no protocol address). 

ADBUF = 
protocol_address_address  

Address of a storage area for returning the protocol address of the 
designated transport user.  

The storage area should be large enough to contain the entire 
address. The format of the protocol address is provider-dependent, 
and its maximum size can be determined by issuing a TINFO 
macro instruction. The storage area can be aligned on any 
boundary.  

Default: Zero (no protocol address storage area). 

1–34     Assembler API Programmer Reference 



TADDR 

ADALET = protocol_address_alet Access List Entry Token (ALET) used in access register (AR) mode 
when referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The ADALET 
parameter can be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the 
caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to 
indicate that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL 
is generated. The suffix contains ALET address extensions that can 
be specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TADDR macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction is complete. A TCHECK macro 
instruction should not be executed since check processing is 
automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TADDR request. 
The application program is responsible for issuing the TCHECK 
macro instruction.  

Default: SYNC (synchronous mode).  

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the protocol address returned to the application 
program by the transport provider should be truncated if it does 
not fit within the storage area provided.  

OPTCD=TRUNC the excess is truncated, and the TADDR macro 
instruction is completed conditionally as long as no other errors 
occur.  

Assembler Language Macro Instructions    1–35 



TADDR 

OPTCD=NOTRUNC nothing is placed in the storage area, and the 
TADDR macro instruction is completed abnormally. 

Default: NOTRUNC (no truncation).  

OPTCD = LOCAL | REMOTE  Protocol address to return to the application program.  

OPTCD=LOCAL the protocol address of the local transport user, 
which was bound to the endpoint by the application program, is 
returned. 

OPTCD=REMOTE the protocol address of the remote transport 
user connected to, or associated with, the endpoint is returned.  

Default: LOCAL (local protocol address).  

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API 
when the TADDR macro instruction associated with this TPL 
completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary.  

If ECB=INTERNAL is coded, the TPL field normally used to store 
the ECB address is used as an internal ECB. The ECB operand 
should only be coded when asynchronous mode is specified.  

In synchronous mode, the request is treated as if ECB=INTERNAL 
was coded, and any value specified with the ECB operand is 
overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address  Address of an exit routine to schedule when the TADDR macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode is 
specified. In synchronous mode, any address specified with the 
EXIT operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB 
operand.  

Default: Not indicated (no TPL exit routine). 

1–36     Assembler API Programmer Reference 



TADDR 

MF = ( I | L | G | M | E,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TADDR 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of 
the TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

Completion Information 

The TADDR macro instruction completes normally (or conditionally) when the 
designated protocol address is returned to the application program. The length 
of the storage area is updated to reflect the actual length of the protocol address. 
The negotiated length of the connect indication queue is also returned in the 
QLSTN field of the TPL associated with this request. The state of the endpoint is 
not changed.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the protocol address returned to the application 
program was truncated to fit in the storage area provided. The TPL return code 
field is set accordingly. No other information is returned. 

If the TADDR macro instruction completes abnormally, no information is 
returned. The state of the endpoint is unchanged. The general return code in 
register 15, and recovery action code in register zero, indicate the nature of the 
failure. The TPL return code field may also contain a specific error code that 
identifies a particular error.  

Assembler Language Macro Instructions    1–37 



TADDR 

Return Codes 

The following table lists the symbolic names for the TADDR return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation  

TROKAY  TAOKAY  TCOKAY  TCTRUNC 

TRFAILED  TAINTEG  TEOVRFLO   

 TAENVIRO  TESYSERR TESUBSYS TEDRAIN 
TESTOP  TETERM 

 TAFORMAT  TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT  TEBDADDR 

 TAPROCED TEAMODE  TESTATE TEINCMPL 

 TATPLERR  TEACTIVE  

RFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted data 
areas maintained within the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the 
process of closing.  

1–38     Assembler API Programmer Reference 



TADDR 

Usage Information 

The TADDR macro instruction is used to retrieve the protocol address of the 
local or remote transport user associated with an endpoint. The local protocol 
address can be retrieved any time after a TBIND macro instruction has been 
successfully executed at the endpoint. The remote protocol address can be 
retrieved any time after a TACCEPT or TCONFIRM macro instruction is 
successfully executed, completing the connection or association with a remote 
transport user.  

Generally, this information is returned to the application program by the macro 
instruction that bound the local protocol address, or completed the connection or 
association. However, if the application program did not provide a storage area 
in which the protocol address could be returned, or needs to acquire the 
information again, the TADDR macro instruction can be used. An example of the 
latter is after an endpoint that has already been bound to a local protocol 
address, is passed to another task or address space. The negotiated length of the 
connect indication queue can also be acquired in this manner.  

If the TADDR macro instruction is executed at an endpoint operating in 
connectionless mode, either the bound local protocol address, or the remote 
protocol address associated with the last received datagram, is returned as 
indicated by the OPTCD operand.  

When a local protocol address is retrieved, a partial protocol address may be 
returned (that is, a portion of the protocol address may be unknown at the time 
the TADDR macro instruction was issued, and the corresponding field is set to 
zero). In particular, if a TADDR macro instruction is issued before a COTS 
endpoint is connected, the network address portion of the protocol address may 
be set to zero. This is because multi-homed hosts (that is, hosts with more than 
one network connection) cannot determine the local network address until the 
destination is known. In the case of a CLTS endpoint, the local network address 
may change if datagrams are transmitted or received via different network 
connections. 

Assembler Language Macro Instructions    1–39 



TBIND 

TBIND 
Bind a Protocol Address to a Transport Endpoint—The TBIND macro 
instruction is used to bind a local protocol address to an endpoint, and to define 
the number of connections that can be pending for the endpoint. When 
completed, a COTS endpoint is ready to begin connection establishment, and a 
CLTS endpoint is ready to begin data transfer.  
[ symbol ] TBIND [ EP=endpoint_id ]  
                 [ ,ADLEN = protocol_address_length ] 
                 [ ,ADBUF = protocol_address_address ] 
                 [ ,ADALET = protocol_address_alet ] 
                 [ ,QLSTN = listen_queue_length ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TRUNC | NOTRUNC ] 
                              [ ,NEGOT | NONEGOT ]  
                              [ ,ASSIGN | USE ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ]  

EP = endpoint_id  Endpoint at which the TBIND macro instruction executes.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid 
or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address, or protocol address storage 
area, identified by the ADBUF operand.  

If the storage area is for retrieving a protocol address from the 
transport provider, the length indicated is the maximum length of the 
storage area. Otherwise, this operand indicates the length of the 
protocol address contained in the storage area. The length may be 
zero, indicating there is no protocol address or storage area.  

Default: Zero (no protocol address).  

1–40     Assembler API Programmer Reference 



TBIND 

ADBUF = 
protocol_address_address 

Address of a protocol address storage area that contains a local 
protocol address assigned by the application program or a local 
protocol address assigned and returned by the transport provider.  

Option codes specified with the OPTCD operand determine how the 
storage area is used. If the local protocol address is assigned by the 
transport provider, the storage area must be large enough to contain 
the returned address. The format and maximum size of a protocol 
address is provider-dependent, and can be determined by issuing a 
TINFO macro. The storage area can be aligned on any boundary. 

Default: Zero (no protocol address storage area).  

ADALET = 
protocol_address_alet 

Access List Entry Token (ALET) used in access register (AR) mode 
when referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET contained in the Dispatchable 
Unit Access List (DUAL) of the caller. You can only us the ADALET 
parameter if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the 
caller). 

QLSTN = listen_queue_length Size of the queue for holding incoming connections arriving at the 
endpoint, and pending connect indications received by the application 
program. 

If the value specified is zero, no connections can be queued, and the 
endpoint is disabled for receiving connects. 

If the value specified is nonzero, incoming connections are queued, 
and corresponding connect indications are generated at the endpoint.  

A connect indication remains pending until it is accepted or rejected 
by the application program, or until the connection is abandoned by 
the caller. The value of this operand generally determines whether the 
application program is operating in client or server mode.  

 
The transport provider may not be able to queue the number of 
connections specified by the application program, and as a result, 
attempts to negotiate the indicated value to a lesser amount. If 
negotiation is permitted by the application program . 

Assembler Language Macro Instructions    1–41 



TBIND 

 (OPTCD=NEGOT), the request completes conditionally, and returns a 
conditional completion code in register zero. Otherwise, the TBIND 
request completes abnormally.  

Default: Zero (endpoint is disabled). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TBIND macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the requested 
macro instruction is complete. A TCHECK macro instruction should 
not be executed since check processing is automatically performed by 
the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TBIND request. The 
application program is responsible for issuing the TCHECK macro 
instruction. 

Default: SYNC (synchronous mode). 

1–42     Assembler API Programmer Reference 



TBIND 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the protocol address returned to the application 
program by the transport provider should be truncated if it does not 
fit within the storage area provided.  

OPTCD=TRUNC the excess is truncated and the TBIND macro 
instruction is completed conditionally as long as no other errors occur. 

OPTCD=NOTRUNC nothing is placed in the storage area and the 
TBIND macro instruction is completed abnormally. 

Default: NOTRUNC (no truncation).  

OPTCD = NEGOT | 
NONEGOT  

Indicates whether the value specified for QLSTN can be negotiated to 
a lesser value.  

OPTCD=NEGOT (and the value is larger than can be accommodated 
by the transport provider), a smaller value is used. The negotiated 
value is returned to the application program, and the TBIND function 
completes conditionally as long as no other errors occur. 

OPTCD=NONEGOT no negotiation is performed and the TBIND 
function completes abnormally. 

Default: NoneGOT (negotiation disallowed). 

OPTCD = ASSIGN | USE  Indicates whether the application program or the transport 
OPTCD=ASSIGN, the transport provider assigns an appropriate 
address. If ADLEN and ADBUF designate a storage area, the transport 
provider returns the protocol address assigned. 

OPTCD=USE the transport provider uses the protocol address 
provided by the application program. The storage area designated by 
the ADLEN and ADBUF operands must contain a valid protocol 
address. 

Default: USE (use protocol address provided by application program).  

Assembler Language Macro Instructions    1–43 



TBIND 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API 
when the TBIND macro instruction associated with this TPL 
completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = 
tpl_exit_routine_address  

Address of an exit routine to schedule when the TBIND macro 
instruction associated with this TPL completes. The TPL exit routine is 
scheduled only if asynchronous mode was specified. In synchronous 
mode, any address specified with the EXIT operand is overwritten by 
an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TBIND macro 
instruction. The second sublist operand, tpl_address, specifies the 
address of the TPL to use for this request. If no MF operand is 
specified, the standard form is used  

See List, Generate, Modify, and Execute Forms for valid combinations 
of the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

1–44     Assembler API Programmer Reference 



TBIND 

Completion Information 

The TBIND function completes normally (or conditionally) when the local 
protocol address is bound to the specified endpoint. The state of the endpoint is 
changed to disabled (TSDSABLD) or enabled (TSENABLD) in accordance with 
the value specified for QLSTN. Any protocol address assigned by the transport 
provider is returned in the storage area provided by the application program. 
The length of the storage area is updated to reflect the actual length of the 
assigned protocol address.  

■  If the endpoint is operating in connectionless mode, then it is ready to send 
and receive datagrams 

■  If the endpoint is operating in connection mode and disabled, the endpoint 
can be used to initiate a connection request 

■  If the endpoint is operating in connection mode and is enabled, the endpoint 
can receive connect indications generated by arriving connection requests 

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCNEGOT is set in the conditional completion code if the value 
specified for QLSTN was negotiated to a lesser value. The negotiated value is 
returned in the same TPL storage location. TCTRUNC is set if the storage area 
was too small to contain the entire protocol address returned by the transport 
provider. The TPL return code field is set accordingly. No other information is 
returned.  

If the TBIND function completes abnormally, the state of the endpoint is 
unchanged. If the state of the endpoint was opened (TSOPENED), no protocol 
address is bound to the endpoint. If the state was disabled (TSDSABLD), the 
endpoint remains in its disabled condition, and the length of the connect 
indication queue is unchanged. The general return code in register 15, and 
recovery action code in register zero, indicate the nature of the failure. The TPL 
return code field may also contain a specific error code that identifies a particular 
error.  

Assembler Language Macro Instructions    1–45 



TBIND 

Return Codes 

The following table lists the symbolic names for the TBIND return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation 

TROKAY TAOKAY TCOKAY   TCTRUNC TCNEGOT 

TRFAILED TAEXCPTN TENONEGO 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN 
TESTOP  TETERM TEUNAUTH  
TERSOURC  TEINUSE 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  TEBDADDR TEBDQLEN 

 TAPROCED TEAMODE  TESTATE TEINCMPL 

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL has been corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted 
data areas maintained within the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the 
process of closing.  

1–46     Assembler API Programmer Reference 



TBIND 

Usage Information 

The TBIND macro instruction associates a local protocol address with a transport 
endpoint. Once a protocol address is bound, an application program may begin 
sending and receiving datagrams through the endpoint if operating in 
connectionless mode, or may request a connection to a remote transport user if 
operating in connection mode. Optionally, a connection-mode endpoint can be 
enabled for receiving connection requests from a remote transport user.  

The local protocol address can be assigned by the application program or the 
transport provider. 

■  If assigned by the application program (OPTCD=USE), then the protocol 
address is placed in a storage area designated by the ADLEN and ADBUF 
operands, and is passed to the transport provider for binding to the endpoint 

■  If assigned by the transport provider (OPTCD=ASSIGN), then the storage 
area is used to return the assigned address  

Generally, an application operating in server mode assigns the protocol address, 
and an application operating in client mode defers this responsibility to the 
transport provider.  

The application program can only assign the local transport address; the local 
network address is always assigned by the transport provider. Therefore, when 
assigning a protocol address, the application program should set the network 
address field to zero, or provide only a partial (that is, truncated) protocol 
address. Similarly, the protocol address returned by the API contains a null 
network address. The local network address is not assigned until a connection is 
established, or a datagram is received at the endpoint. If the application program 
requires the local network address, it should execute a TADDR macro instruction 
after the connection is established at a COTS endpoint, or after a datagram has 
been transmitted or received at a CLTS endpoint.  

Note: The local network address bound to a connectionless-mode endpoint may 
change with each datagram transmitted or received via the endpoint.  

Application programs operating in client mode are active, and as soon as a local 
protocol address is bound, the endpoint can be used to initiate a connection to 
the server. Application programs operating in server mode are passive, and wait 
for the client to send a connection request. Arriving connections are queued by 
the transport provider, and cause connect indications to be generated at the 
endpoint. The number of connections that can be queued at the endpoint, and 
the number of connect indications that can be pending, is determined by the 
value of QLSTN specified when the local protocol address was bound.  

Assembler Language Macro Instructions    1–47 



TBIND 

Connections that arrive at the endpoint are queued until accepted or rejected by 
the application program. When the queue is full, subsequent connection requests 
are discarded. A larger value for QLSTN reduces the chances of a transport user 
finding the endpoint busy, and gives the application more time to respond to a 
connect indication. A value of zero disables the endpoint from receiving any 
connect indications. Application programs operating in client mode must leave 
the endpoint disabled by setting QLSTN to zero.  

Note: The value of QLSTN does not limit the number of transport users that can 
be simultaneously connected to the application program. The number of pending 
connections is limited by the QLSTN value; the number of established 
connections is limited by the number of requests the application program is 
willing to accept. One endpoint must be created for each accepted connection 
(see TACCEPT ).  

The value specified for QLSTN by application programs operating in 
connectionless mode should normally be zero. However, if a nonzero value is 
specified, the transport provider simulates connection-mode service (that is, the 
first arriving datagram generates a connect indication, which the application 
program is expected to receive via a TLISTEN macro instruction, and accept or 
reject with a TACCEPT or TREJECT macro instruction). If accepted, an 
association is created for the endpoint, and TRECV and TSEND macro 
instructions can be used to send and receive data. If the server is multithreaded, 
datagrams arriving from other transport users generate new connect indications. 

The binding of the local protocol address and enabling of the endpoint can be 
separated into two distinct requests issued to the transport provider. If the first 
request binds a protocol address and leaves the endpoint disabled by specifying 
a QLSTN value of zero, a second TBIND macro instruction can be executed to 
enable the endpoint. If the second instance of TBIND specifies a protocol 
address, it must be the address already bound to the endpoint.  

The format and content of a protocol address is provider-dependent. To 
minimize dependence on a particular provider, or particular protocol, 
applications operating in server mode should use directory services to map 
service names into local protocol addresses. Clients should let the transport 
provider assign the protocol address, and should use directory services to get 
addresses of remote hosts and services. The chapter “DNR Directory Services” 
provides information on using Network Directory Services (NDS) supported by 
Unicenter TCPaccess. 

1–48     Assembler API Programmer Reference 



TCHECK 

TCHECK 
Check Status of a Transport Service Request—The TCHECK macro instruction 
is used to check the completion status of an active TPL. If necessary, a system 
WAIT macro instruction is issued to wait for completion, and if the request 
completed abnormally, the SYNAD or LERAD exit routine is entered.  
[ symbol ] TCHECK MF = ( E, tpl_address ) 

 

MF = ( E, tpl_address ) Execute form of the TCHECK macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
associated with the request whose completion status is being checked.  

See List, Generate, Modify, and Execute Forms for valid combinations 
of the MF subparameters. 

Default: None (must be coded as indicated).  

Completion Information 

The TCHECK macro instruction completes normally or conditionally when the 
request associated with the TPL has been posted complete, and the TPL has been 
set inactive. The state of the endpoint is updated to reflect the actions taken by 
the API routines. If an internal or external ECB is used for synchronization, the 
ECB is cleared.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY) to indicate successful completion, and the conditional 
completion code (if any) is returned in register zero. The TPL return code field is 
set accordingly. Other information may be returned in the TPL or storage areas 
provided by the application program in accordance with the particular service 
requested by the TPL.  

If the TCHECK macro instruction completes abnormally, the TPL associated with 
the request is set inactive, the internal or external ECB (if any) is cleared, and the 
state of the endpoint is unchanged. The general return code in register 15, and 
recovery action code in register zero indicates the nature of the failure. The TPL 
return code field may also contain a specific error code that identifies a particular 
error.  

Assembler Language Macro Instructions    1–49 



TCHECK 

Return Codes 

The return codes passed in registers zero and 15, and stored in the TPL return 
code field, are set in accordance with the particular request associated with the 
TPL. The return codes that are valid for each macro instruction are listed with the 
description of the macro instruction. The return codes listed in the following 
table are those that can be generated during TCHECK processing:  

Note: If the SYNAD or LERAD exit routine is scheduled, the values in register 
zero and 15 at the next sequential instruction following the macro instruction are 
the values returned by the exit routine. 

The following table lists the symbolic names for the TCHECK return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TRFAILED TAPROCED TEINACTV  

 TATPLERR TEB4EXIT  

TRFATLFC func. code The function code loaded into register zero 
is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL has 
been corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas 
maintained within the application 
program's address space. 

TRFATLAP diag. code The APCB associated with the transport 
user is closed, or is in the process of 
closing.  

1–50     Assembler API Programmer Reference 



TCHECK 

Usage Information 

The TCHECK macro instruction is used to check the completion status of a TPL-
based request executed in asynchronous mode. If the request is incomplete, the 
task issuing the TCHECK macro instruction is suspended until posted complete. 
The TPL is set inactive so it can be used with another request, and if the request 
completed abnormally, the SYNAD or LERAD exit routine (if any) is entered. 

When a TPL-based request is executed in asynchronous mode (that is, 
OPTCD=ASYNC was indicated by macro instruction), the API returns to the 
application program immediately after scheduling the requested function. If the 
return code in register 15 is zero (TROKAY), the request is accepted and executed 
asynchronously. The application program must subsequently issue a TCHECK 
macro instruction to check for completion of the request. 

Request completion is indicated in one of these ways:  

■  Posting of an ECB 

■  Entering a TPL exit routine 

The mechanism used for a particular request is indicated by the ECB or EXIT 
macro instruction operands, and the actions performed by the TCHECK macro 
instruction depend on which was indicated. 

When the TCHECK macro instruction is executed for a TPL-based request that 
specified an ECB, these actions occur:  

■  If the request being checked has not been completed, execution of the 
application program task that issued the TCHECK macro instruction is 
suspended until the request is completed. However, any exit routines 
associated with the endpoint can still run. 

■  The ECB (internal or external) is cleared. 

Note: The ECB specified in the TPL-based macro instruction must not be cleared 
between the time the macro instruction is issued and the corresponding 
TCHECK macro instruction is issued. If the ECB is cleared during this interval, 
the application program task may be suspended indefinitely. 

■  The TPL being checked is marked inactive and available for reuse by another 
TPL-based macro instruction. 

■  If the request being checked completed normally or conditionally (as 
indicated by the return code), control is returned to the next sequential 
instruction following the TCHECK macro instruction.  

Assembler Language Macro Instructions    1–51 



TCHECK 

■  If the request being checked completed abnormally, the SYNAD or LERAD 
exit routine is invoked, if available. Otherwise, control is returned to the next 
sequential instruction following the TCHECK macro instruction. 

■  If the SYNAD or LERAD exit routine is invoked, and the exit routine returns 
to the address in register 14 at the time it was entered, control is returned to 
the next sequential instruction following the TCHECK macro instruction. In 
this case, the contents of register zero and 15 are those returned by the exit 
routine. 

When a TPL exit routine is used in place of an ECB, the TCHECK macro 
instruction should be issued within the exit routine. These actions occur:  

■  The TPL being checked is marked inactive and available for reuse by another 
TPL-based macro instruction. 

■  If the request being checked completed normally or conditionally (as 
indicated by the return code), control is returned to the next sequential 
instruction following the TCHECK macro instruction.  

■  If the request being checked completed abnormally, the SYNAD or LERAD 
exit routine is invoked, if available. Otherwise, control is returned to the next 
sequential instruction following the TCHECK macro instruction. 

■  If the SYNAD or LERAD exit routine is invoked, and the exit routine returns 
to the address in register 14 at the time it was entered, control is returned to 
the next sequential instruction following the TCHECK macro instruction. In 
this case, the contents of register zero and 15 are those returned by the exit 
routine.  

■  If issued outside the exit routine, and before the exit routine is invoked, the 
TCHECK macro instruction completes abnormally. 

A TCHECK request can only be issued against a TPL that is marked active. 
Abnormal completion occurs if issued for an inactive TPL that is inactive. The 
TCHECK macro instruction should never be issued for a TPL associated with a 
synchronous request. When operating in synchronous mode, the API performs 
TCHECK equivalent processing automatically, and processing proceeds as 
though an internal ECB was specified. 

1–52     Assembler API Programmer Reference 



TCLEAR 

TCLEAR 
Acknowledge (Clear) Disconnect Indication—The TCLEAR macro instruction is 
issued to clear a disconnect indication pending at an endpoint, and to receive the 
disconnect reason code and any data accompanying the disconnect.  
[ symbol ] TCLEAR [ EP = endpoint_id ] 
                  [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                               [ ,SYNC | ASYNC ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = tpl_exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TCLEAR macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An 
invalid or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to 
indicate that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL 
is generated. The suffix contains ALET address extensions that can 
be specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TCLEAR macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction is complete. A TCHECK macro 
instruction should not be executed since check processing is 
automatically performed by the API. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TCLEAR request. 
The application program is responsible for issuing the TCHECK 
macro instruction. 

Default: SYNC (synchronous mode).  

Assembler Language Macro Instructions    1–53 



TCLEAR 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API 
when the TCLEAR macro instruction associated with this TPL is 
completed.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally 
used to store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode 
is specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TCLEAR 
macro instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode has 
been specified. In synchronous mode, any address specified with 
the EXIT operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TCLEAR 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

1–54     Assembler API Programmer Reference 



TCLEAR 

Completion Information 

The TCLEAR macro instruction completes normally (or conditionally) when the 
pending disconnect indication is cleared, and any disconnect user data received 
with the disconnect is moved into the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount of 
disconnect user data returned.  

The state of the endpoint is changed in accordance with the value specified for 
QLSTN by a TBIND macro instruction. If the endpoint cannot receive connect 
indications, the state is changed to disabled (TSDSABLD). Otherwise, the state is 
changed to enabled (TSENABLD) unless other connect indications are pending, 
in which case the state is unchanged (that is, the current state must have been 
connect-indication-pending (TSINCONN).  

A protocol-dependent reason code is returned in the DISCD field of the TPL 
which specifies the reason for the disconnect. If the disconnect was received for a 
pending connect indication that is being abandoned by the remote transport 
user, the associated sequence number is returned in the TPLSEQNO field of the 
TPL.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the disconnect user data returned to the 
application program was truncated to fit in the storage area provided. The TPL 
return code field is set accordingly. No other information is returned. 

If the TCLEAR macro instruction completes abnormally, no information is 
returned, and the disconnect indication (if any) remains queued. The state of the 
endpoint is unchanged. The general return code in register 15, and recovery 
action code in register zero, indicate the nature of the failure. The TPL return 
code field may also contain a specific error code that identifies a particular error.  

Assembler Language Macro Instructions    1–55 



TCLEAR 

Return Codes 

The following table lists the symbolic names for the TCLEAR return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation 

TROKAY TAOKAY TCOKAY  TCTRUNC 

 TAINTEG TEPROTO  TEOVRFLO 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN 
TESTOP  TETERM TEUNSUPO   
TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  TEBDDATA 

 TAPROCED TEAMODE  TESTATE TEINCMPL 
TENODISC 

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted 
data areas maintained within the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the 
process of closing.  

1–56     Assembler API Programmer Reference 



TCLEAR 

Usage Information 

The TCLEAR macro instruction is used to clear a pending disconnect indication, 
and to receive any user data sent with the disconnect request. This macro 
instruction should only be issued if a disconnect indication exists at the endpoint.  

A disconnect indication is generated when a disconnect request is received at an 
endpoint, and can occur under any one of the following conditions: 

■  A connection request initiated by a TCONNECT macro instruction is 
pending, and the called transport user rejected the request 

■  A connection request initiated by a TCONNECT macro instruction was 
accepted by the called transport user, but before the application issued a 
TCONFIRM macro instruction completing the connection, the transport user 
disconnected 

■  A connect indication that was received with a TLISTEN macro instruction is 
pending, and the calling transport user disconnected before it was accepted 
with a TACCEPT macro instruction, or rejected with a TREJECT macro 
instruction 

■  A connection was fully established, and the peer transport user disconnected 
while data transfer was in progress 

■  Data transfer was complete, but before the application program could 
disconnect, the peer transport user requests a disconnect 

■  The application program initiated an orderly release with the TRELEASE 
macro instruction, and the peer transport user disconnected before the 
complementary orderly release was received with the TRELACK macro 
instruction 

■  The peer transport user initiated an orderly release that was received by a 
TRELACK macro instruction, but disconnected before the application 
program completed the orderly release with a TRELEASE macro instruction  

These disconnect indications are all initiated as the result of some action by the 
remote transport user. The transport provider may also generate a disconnect 
indication on its own. This typically occurs when the transport provider fails to 
establish or maintain a connection because of a protocol error or network 
malfunction.  

A disconnect causes immediate release of a connection. If the connection was 
fully established, any data buffered at the endpoint is discarded, and no 
additional data can be sent. The only information queued at the endpoint is the 
disconnect user data that was sent with the disconnect request. Once a 
disconnect indication is pending, only a TCLEAR (or TCLOSE) macro instruction 
should be issued.  

Assembler Language Macro Instructions    1–57 



TCLEAR 

A limited amount of user data may be received with the disconnect indication if 
supported by the transport provider. The content of this data is application-
dependent, and not interpreted by the API or the transport provider. The 
maximum length of user data that can be received can be determined by issuing 
a TINFO macro instruction. Disconnects initiated by the transport provider are 
never accompanied by user data.  

A disconnect reason code is returned by the transport provider. The value and 
interpretation of the reason code is provider-dependent. These are some possible 
reasons: 

■  Invoked by remote transport user (disconnect user data may contain 
additional information) 

■  Invoked by the transport provider due to the lack of resources 

■  Quality of service below minimum level 

■  Invoked by the transport provider due to protocol error or fatal malfunction 

■  Called transport user is unknown or unreachable 

■  Called transport user is unavailable 

■  Invoked by transport provider, but no reason given  

If a disconnect occurs on an enabled endpoint while a connect indication is 
pending, a disconnect indication is generated. The indication can be presented 
synchronously with the completion of a TACCEPT (or TREJECT) macro 
instruction, or generated asynchronously by scheduling the DISCONN exit (see 
TEXLST). In either case, when the TCLEAR macro instruction is executed, a 
sequence number is returned. The sequence number should be used by the 
application program to determine which connection request to abandon.  

The TCLEAR macro instruction is normally only executed at endpoints operating 
in connection mode. However, if an association has been established for an 
endpoint operating in connectionless mode, the transport provider may generate 
a disconnect indication under certain abnormal conditions. In this case, the 
indication must be cleared with a TCLEAR macro instruction, which also serves 
to terminate the association. 

1–58     Assembler API Programmer Reference 



TCLOSE 

TCLOSE 
Close a Transport Endpoint—The TCLOSE macro instruction closes an 
endpoint, and alternatively, to pass control of the endpoint to another task or 
address space. If the endpoint is to be deleted, any resources associated with the 
endpoint are released.  
[ symbol ] TCLOSE [ EP = endpoint_id ] 
                  [ ,TCB = task_control_block_address ] 
                  [ ,ASCB = address_space_control_block_address | ANY] 
                  [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                               [ ,SYNC | ASYNC ] 
                               [ ,DELETE | PASS ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = tpl_exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ tpl_address ] ) ] 

 
EP = endpoint_id Endpoint at which the TCLOSE macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  
Default: Zero (no endpoint specified).  

TCB = 
task_control_block_address  

TCB address of a task that acquires control of the endpoint when OPTCD=PASS 
is specified. 
If the indicated value is zero, control is passed to the first task in the specified 
address space, which issues a complementary TOPEN macro instruction. 
If the indicated value is not zero, control can only be passed to the indicated 
task. 
Default: Zero (pass to any task). 

ASCB = 
address_space_control_block
_address | ANY 

ASCB address of another address space that acquires control of the endpoint 
when OPTCD=PASS is specified.  
If the indicated value is zero, the endpoint can only be passed to a task 
executing in the same address space. 
If the indicated value is not zero, the indicated value is the ASCB address of 
another address space containing the task that acquires control. 
If the indicated value is ANY, the endpoint can be passed to any address space 
in the system. 
Default: Zero (pass to task in this address space).  

Assembler Language Macro Instructions    1–59 



TCLOSE 

OPTCD = SHORT | 
LONG | EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate that a 
subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is generated. 
The suffix contains ALET address extensions that can be specified by other 
request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 
OPTCD = SYNC | 
ASYNC  

Synchronization mode to use when executing the TCLOSE macro instruction.  
OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction is 
complete. A TCHECK macro instruction should not be executed since check 
processing is automatically performed by the API. 
OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TCLOSE request. The application 
program is responsible for issuing the TCHECK macro instruction to complete 
the TCLOSE request. 
Default: SYNC (synchronous mode).  

OPTCD = DELETE | 
PASS  

Disposition of the endpoint designated in the TPL associated with this macro 
instruction.  
OPTCD=DELETE the endpoint is closed, and any record of the endpoint is 
deleted from all internal tables and local storage. 
OPTCD=PASS the endpoint is not closed, and control of the endpoint is passed 
to the designated task or address space that issued the corresponding TOPEN 
(OPTCD=OLD). 
When control is being passed, the TCLOSE request does not complete until a 
complementary TOPEN (OPTCD=OLD) macro instruction is issued by the 
acquiring task or address space.  
Default: DELETE (delete endpoint). 

1–60     Assembler API Programmer Reference 



TCLOSE 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when the 
TCLOSE macro instruction associated with this TPL is completed.  

The ECB can be any fullword of storage aligned on a fullword boundary. If 
ECB=INTERNAL is coded, the TPL field normally used to store the ECB address 
is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is specified. 
In synchronous mode, the request is treated as if ECB=INTERNAL was coded, 
and any value specified with the ECB operand is overwritten by the internal 
ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  
EXIT = 
tpl_exit_routine_address  

Address of an exit routine to be scheduled when the TCLOSE macro instruction 
associated with this TPL is completed.  
The TPL exit routine is scheduled only if asynchronous mode has been 
specified. In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB. This operand is mutually exclusive with the 
previous ECB operand.  
Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TCLOSE macro 
instruction. The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the standard form is 
used. 
See List, Generate, Modify, and Execute Forms for valid combinations of the MF 
subparameters. 
Default: MF=I (standard, nonreentrant form). 

Assembler Language Macro Instructions    1–61 



TCLOSE 

Completion Information 

The TCLOSE macro instruction completes normally when the endpoint is closed, 
or control has been passed to the acquiring task.  

■  If the OPTCD=DELETE operand was indicated, the state of the endpoint is 
changed to closed (TSCLOSED)  

■  If the OPTCD=PASS operand was indicated, the state of the endpoint is 
unchanged  

In this case, the TCLOSE macro instruction does not complete until the acquiring 
task successfully executes a matching TOPEN macro instruction indicating 
OPTCD=OLD, at which time it becomes the controlling task.  

The TCB and ASCB addresses of the acquiring task are returned in the TPL.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned.  

If the TCLOSE macro instruction completes abnormally, the issuing task 
continues to control the endpoint. The state of the endpoint is unchanged. The 
general return code in register 15, and recovery action code in register zero, 
indicate the nature of the failure. The TPL return code field may also contain a 
specific error code that identifies a particular error.  

1–62     Assembler API Programmer Reference 



TCLOSE 

Return Codes 

The following table lists the symbolic names for the TCLOSE return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation  

TROKAY TAOKAY TCOKAY  

TRFAILED TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TESTOP TETERM TEUNAUTH    
  TERSOURC TENOTACT 

 TAFORMAT TEBDOPCD TEBDXECB TEBDEPID  
TEBDTCB TEBDASCB 

 TAPROCED TEAMODE  TEOWNER TEINCMPL              TESTATE 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted 
data areas maintained within the application program's address 
space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the 
process of closing.  

Assembler Language Macro Instructions    1–63 



TCLOSE 

Usage Information 

The TCLOSE macro instruction is used to terminate (that is, close) an endpoint, 
and to remove any record of it from the system and communications domain in 
which it was created. Alternatively, the TCLOSE macro instruction can be used 
to pass control to an endpoint within the same task, or to another task or address 
space. 

If OPTCD=DELETE is indicated, the TCLOSE macro instruction closes the 
endpoint, and removes any record of it from the system. All internal resources 
allocated to the endpoint are deleted, and the endpoint can no longer be 
referenced by any TPL-based macro instruction. Its existence in the 
communications domain, specified when the endpoint was created, is 
terminated.  

An endpoint can be closed from any state. Normally, the application program 
closes an endpoint after any connection or association established at the endpoint 
has been released, and the local protocol address has been unbound. In this case, 
the state of the endpoint is opened (TSOPENED). However, if the endpoint is 
closed from any other state, the previously described operations are simulated to 
return the endpoint to the opened state before closing. If the endpoint was 
engaged in data transfer, any data buffered at the endpoint is discarded, and an 
abortive disconnect is executed. It is also possible to issue TCLOSE 
OPTCD=DELETE on the endpoint that is being passed by TCLOSE 
OPTCD=PASS. 

The TCLOSE macro instruction provides a quick and convenient way to clean up 
after a major failure. In fact, the API resource recovery routines execute a 
TCLOSE function for each endpoint opened by a terminating task. The 
application program is responsible for recovering resources that it allocated such 
as TPL and data storage areas.  

An endpoint can only be closed by the task that opened it. The opening task is 
said to control (or own) the endpoint, although other tasks can issue the API 
macro instructions that reference the endpoint. If it is necessary for another task 
to close an endpoint, control must be passed by indicating OPTCD=PASS when 
executing the TCLOSE macro instruction. The task acquiring control must issue a 
complementary TOPEN macro instruction indicating OPTCD=OLD, which 
specifies the same endpoint. The TCB and ASCB addresses of the new controlling 
task are returned to the application program.  

1–64     Assembler API Programmer Reference 



TCLOSE 

Note: The endpoint identifier may change as control is passed from one task to 
another (see TOPEN). If control of an endpoint is passed to another task in the 
same address space, the task relinquishing control may continue to reference the 
endpoint, but must use the new endpoint identifier. The new endpoint ID is 
created and returned to the acquiring task after the complementary TOPEN 
macro instruction completes. The old endpoint ID should never be referenced 
again, either by the relinquishing or acquiring task. Please note that there are no 
restrictions of the order in which TCLOSE OPTCD=DELETE and TOPEN 
OPTCD=OLD occur. 

Control can be passed to any task or address space that would otherwise have 
been authorized to create the endpoint. 

■  If a TCB address is indicated with the TCLOSE macro instruction, then only 
that task can acquire control 

■  If an ASCB address is indicated, then only a task in the designated address 
space can acquire control  

■  If neither of the above is indicated, then the first task in the current address 
space to issue the complementary TOPEN macro instruction acquires control 
of the endpoint 

The endpoint can be passed in the opened (TSOPENED), disabled (TSDSABLD), 
enabled (TSENABLD), or connected (TSCONNCT) state, and must not have any 
incomplete requests pending at the endpoint. The state of the endpoint is 
unchanged, and the task relinquishing control may continue to reference the 
endpoint using the new endpoint ID created by the corresponding TOPEN 
OPTCD=OLD. Any exit list associated with the endpoint is replaced by the new 
exit list (if any) indicated by the complementary TOPEN macro instruction. 

Whenever an asynchronous TCLOSE (OPTCD=ASYNC) completes normally 
(that is, recovery code is TAOKAY), the TCLOSE must be TCHECKED to let the 
cleanup of endpoint related control blocks complete. TOPEN specified with 
OPTCD=OLD does not complete until a TCHECK is performed on the related 
asynchronous TCLOSE OPTCD=PASS. 

Assembler Language Macro Instructions    1–65 



TCONFIRM 

TCONFIRM 
Acknowledge Confirm Indication—A connect confirm indication received at an 
endpoint as the result of a previous TCONNECT request being acknowledged 
with the TCONFIRM macro instruction. The remote protocol address of the 
connected (or associated) transport user is returned to the application program.  
[ symbol ] TCONFIRM [ EP = endpoint_id ] 
                    [ ,ADLEN = protocol_address_length ] 
                    [ ,ADBUF = protocol_address_address ] 
                    [ ,ADALET = protocol_address_alet 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                 [ ,SYNC | ASYNC ] 
                                 [ ,TRUNC | NOTRUNC ] 
                                 [ ,BLOCK | NOBLOCK ] ) ] 
                    [, ECB = INTERNAL | event_control_block_addr ] 
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | M | E ,[ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TCONFIRM macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address storage area identified by the 
ADBUF operand.  

The length is updated when the request is completed to reflect the actual 
length of the protocol address returned. If the length is zero, the protocol 
address of the called transport user is not returned to the application 
program.  

Default: Zero (return no protocol address). 

1–66     Assembler API Programmer Reference 



TCONFIRM 

ADBUF = 
protocol_address_address  

Address of a storage area for returning the protocol address of the called 
transport user.  

The storage area should be large enough to contain the entire address. 
The format of the protocol address is provider-dependent, and its 
maximum size can be determined by issuing a TINFO macro instruction. 
The storage area can be aligned on any boundary.  

Default: Zero (no protocol address storage area). 

ADALET = 
protocol_address_alet 

Access List Entry Token (ALET) that is used in access register (AR) mode 
when referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The ADALET 
parameter may be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier indicates that a 
subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TCONFIRM macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
control is returned immediately after scheduling the TCONFIRM 
request. The application program is responsible for issuing the TCHECK 
macro instruction. 

Default: SYNC (synchronous mode). 

Assembler Language Macro Instructions    1–67 



TCONFIRM 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the information returned to the application program 
by the transport provider should be truncated if it does not fit within the 
storage area provided.  

OPTCD=TRUNC the excess is truncated, and the TCONFIRM macro 
instruction is completed conditionally as long as no other errors occur.  

OPTCD=NOTRUNC nothing is placed in the storage area, and the 
TCONFIRM macro instruction is completed abnormally. 

Default: NOTRUNC (no truncation). 

OPTCD = BLOCK | 
NOBLOCK  

Indicates whether the issuing task can be suspended if the TCONFIRM 
macro instruction cannot be completed immediately.  

OPTCD=BLOCK (and no connect information has been received) the 
issuing task is suspended until the connection request is confirmed. 

OPTCD=NOBLOCK the TCONFIRM macro instruction is completed 
immediately, and an abnormal return code indicates that the task would 
have been suspended for an indefinite period.  

In either case, if a connect confirmation was received, the TCONFIRM 
macro instruction completes normally without suspending the issuing 
task.  

When OPTCD=NOBLOCK is indicated, the TCONFIRM macro 
instruction can be used to poll for a connect confirmation. If the 
connection request was confirmed, the request is completed as usual. 
Otherwise, the request is completed abnormally, and the transport user 
can try again after delaying an appropriate period (for example, the 
expected round-trip time).  

Default: BLOCK (suspend issuing task if necessary). 

1–68     Assembler API Programmer Reference 



TCONFIRM 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TCONFIRM macro instruction associated with this TPL is completed. 

The ECB can be any fullword of storage aligned on a fullword boundary. 
If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_addressAddress of an exit routine to be scheduled when the TCONFIRM macro 
instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode has been 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TCONFIRM 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

Assembler Language Macro Instructions    1–69 



TCONFIRM 

Completion Information 

The TCONFIRM macro instruction completes normally (or conditionally) when 
the confirm indication, generated by a connect confirmation sent by the called 
transport user, is received by the application program. The state of the endpoint 
is changed from connect-in-progress (TSOUCONN) to connected (TSCONNCT), 
and the endpoint is ready to send and receive data. 

If a storage area was provided by the application program, the protocol address 
of the called transport user is returned. The protocol address length field 
indicated by macro instruction operand ADLEN is updated to reflect the actual 
length of the protocol address.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the protocol address returned to the application 
program was truncated to fit in the storage area provided. The TPL return code 
field is set accordingly. No other information is returned. 

If the TCONFIRM macro instruction completes abnormally, no information is 
returned, and the pending connect confirmation (if any) remains queued. The 
state of the endpoint is unchanged. The general return code in register 15, and 
recovery action code in register zero, indicate the nature of the failure. The TPL 
return code field may also contain a specific error code that identifies a particular 
error.  

1–70     Assembler API Programmer Reference 



TCONFIRM 

Return Codes 

The following table lists the symbolic names for the TCONFIRM return codes. 
The values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General Return 
Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY  TCTRUNC 

TRFAILED TAEXCPTN TENOBLOK 

 TAINTEG TEPROTO  TEOVRFLO TEDISCON 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN
  
TESTOP  TETERM
 TEUNSUPO 
TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB
  
TEBDEXIT  TEBDDATA TEBDOPTN

 TAPROCED TEAMODE  TESTATE TEINCMPL 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero 
is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas 
maintained within the application program’s
address space. 

TRFATLAP diag. code The APCB associated wit the transport user 
is closed or is in the process of closing. 

Assembler Language Macro Instructions    1–71 



TCONFIRM 

Usage Information 

The TCONFIRM macro instruction is used to receive a confirm indication that is 
pending for the endpoint. A confirm indication is generated when a connect 
confirmation is sent by a remote transport user in response to a connection 
request initiated by the application program with a TCONNECT macro 
instruction. On successful completion of this macro instruction, the specified 
endpoint is connected, and ready to send and receive data.  

The protocol address of the remote transport user is returned to the application 
program.  

Note: Existing protocols require that the called protocol address (the protocol 
address supplied with the TCONNECT request) and responding protocol 
address (the protocol address returned with TCONFIRM completion) be the 
same.  

The TCONFIRM macro instruction is normally issued at an endpoint operating 
in connection mode. However, if the endpoint is operating in connectionless 
mode, and the application program created an association by issuing a 
TCONNECT macro instruction, the TCONFIRM macro instruction must be 
issued to receive the (simulated) connect confirmation generated by the API. 
Refer to Assembler API Concepts for a discussion of associations in connectionless 
mode. 

1–72     Assembler API Programmer Reference 



TCONNECT 

TCONNECT 
Request a Connection with another Transport User—The TCONNECT macro is 
used to request a connection to a remote transport user. The application program 
supplies the remote protocol address, protocol options, and any connect user 
data it wants to send to the remote transport user. 
[ symbol ] TCONNECT [ EP = endpoint_id ] 
                    [ ,ADLEN = protocol_address_length ] 
                    [ ,ADBUF = protocol_address_address ] 
                    [ ,ADALET = protocol_address_alet ] 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                 [ ,SYNC | ASYNC ] ) ] 
                                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | ME , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TCONNECT macro instruction is executed. 

The value specified must be the endpoint identifier returned by 
the TOPEN macro instruction when the endpoint was opened. An 
invalid or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

ADLEN = protocol_address_length  Length (in bytes) of the protocol address contained in the storage 
area identified by the ADBUF operand. A length of zero is invalid,
and causes the request to be abnormally completed.  

Default: Zero (no protocol address). 

ADBUF = protocol_address_address  Address of a storage area containing the protocol address of a 
remote transport user.  

If the endpoint is operating in connection mode, a connection is 
established to the transport user at the indicated protocol address. 

If the endpoint is operating in connectionless mode, an association 
is made such that any datagram sent with a TSEND macro 
instruction is sent to the indicated address, and a TRECV macro 
instruction acts as a filter selecting only those datagrams from the 
associated protocol address.  

The length of the protocol address is designated by the ADLEN 
operand.  

Default: Zero (no protocol address storage area). 

Assembler Language Macro Instructions    1–73 



TCONNECT 

ADALET = protocol_address_alet Access List Entry Token (ALET) that is used in access register 
(AR) mode when referencing the storage specified by the ADBUF 
parameter.  

The ADALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. You can only 
use the ADALET parameter if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the 
caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request. 

OPTCD=SHORT a different control block identifier is used to 
indicate that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL 
is generated. The suffix contains ALET address extensions that 
can be specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG 
otherwise.  

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TCONNECT 
macro instruction.  

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction is complete. A TCHECK macro 
instruction should not be executed since check processing is 
automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TCONNECT 
request. The application program is responsible for issuing the 
TCHECK macro instruction.  

Default: SYNC (synchronous mode). 

1–74     Assembler API Programmer Reference 



TCONNECT 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API 
when the TCONNECT macro instruction associated with this TPL 
is completed.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally 
used to store the ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous 
mode is specified. In synchronous mode, the request is treated as 
if ECB=INTERNAL was coded, and any value specified with the 
ECB operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TCONNECT 
macro instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode has 
been specified. In synchronous mode, any address specified with 
the EXIT operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB 
operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the 
TCONNECT macro instruction.  

The second sublist operand, tpl_address, specifies the address of 
the TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Assembler Language Macro Instructions    1–75 



TCONNECT 

Completion Information 

The TCONNECT macro instruction completes normally (or conditionally) when 
the connect-request primitive is issued to the transport provider. The state of the 
endpoint is changed from disabled (TSDSABLD) to connect-in-progress 
(TSOUCONN). The connection is not established until a confirm indication is 
received by the application program via a TCONFIRM macro instruction.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCNEGOT is set in the conditional completion code if a requested 
protocol option was negotiated to an inferior value. The TPL return code field is 
set accordingly. No other information is returned. 

If the TCONNECT macro instruction completes abnormally, no connection 
request is sent to the called transport user. The state of the endpoint is 
unchanged. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field may 
also contain a specific error code that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TCONNECT return codes. 
The values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY  TCNEGOT 

TRFAILED TAEXCPTN TENONEGO  

 TAINTEG TEPROTO  

 TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TETERM  TESTOP TEUNSUPO 
TERSOURC  TEUNSUPF TEUNAUTH 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  TEBDADDR TEBDDATA 
TEBDOPTN 

 TAPROCED TEAMODE    TESTATE TEINCMPL 

1–76     Assembler API Programmer Reference 



TCONNECT 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely 
due to corrupted data areas maintained within the 
application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Usage Information 

The TCONNECT macro instruction is used to request a connection with a remote 
transport user. The protocol address of the called transport user, connect user 
data, and protocol options to associate with the connection are provided with the 
connection request. The endpoint must be in the disabled state (TSDSABLD) 
when the TCONNECT macro instruction is issued.  

The TCONNECT macro instruction only serves to initiate the connection request. 
It is completed when the corresponding connect-request primitive is issued to 
the transport provider. The connection is not established until a connect 
confirmation is received from the called transport user. Receipt of a connect 
confirmation causes a confirm indication to be generated, and the application 
program can receive the indication with a TCONFIRM macro instruction.  

The TCONNECT macro instruction is generally used by application programs 
operating in client mode. The protocol address (or name) of the remote server 
should be well known to the application program and other transport users that 
desire to use its services. Local directory services can be used to map host and 
service names into a protocol address that can then be supplied with the 
TCONNECT macro instruction. Directory services supported by TCPaccess are 
documented in the chapter “DNR Directory Services.”  

Assembler Language Macro Instructions    1–77 



TDISCONN 

The TCONNECT macro instruction is primarily intended for endpoints 
operating in connection mode. However, when executed at an endpoint 
operating in connectionless mode, a permanent association is made with the 
indicated transport user. Once this association is made, TSEND can be used in 
place of TSENDTO to transmit datagrams to the associated transport user. 
TRECV can be used in place of TRECVFR to select datagrams received from the 
same transport user.  

An association is most useful when the application program is operating as a 
client using a connectionless-mode service. The TCONNECT macro instruction is 
used in the same way as with connection-mode service. The protocol address 
and options are saved and used for each subsequent send and receive operation. 
A TCONFIRM macro instruction is required to complete the association, just as 
in connection mode. 

TDISCONN 
Initiate Abortive Disconnect—The TDISCONN macro instruction is used to 
release a connection to a remote transport user, or to abandon a connection 
attempt that is in progress. The connection release is immediate, and no attempt 
is made to preserve data in transit.  
[ symbol ] TDISCONN [ EP = endpoint_id ] 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                 [ ,SYNC | ASYNC ] 
                                 [ ,ABORT | CLEAR ] ) ] 
                    [ ,ECB = INTERNAL | event_control_block_addr ] 
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TDISCONN macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

1–78     Assembler API Programmer Reference 



TDISCONN 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that 
a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or if MF operand is omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TDISCONN macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TDISCONN request. 
The application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode).  

OPTCD = ABORT | CLEAR  Action that the transport provider should take when the application 
program issues a TDISCONN macro instruction at an endpoint for 
which a disconnect indication is already pending.  

OPTCD=ABORT the TDISCONN request clears the disconnect 
indication, and the macro instruction is completed normally (or 
conditionally) if no other errors occur. 

OPTCD=CLEAR the request is completed abnormally, and the 
application program must clear the pending disconnect indication with a 
TCLEAR macro instruction. 

Default: CLEAR (clear pending disconnect indication).  

Assembler Language Macro Instructions    1–79 



TDISCONN 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TDISCONN macro instruction associated with this TPL is completed. 

The ECB can be any fullword of storage aligned on a fullword boundary. 
If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TDISCONN macro 
instruction associated with this TPL has completed.  

The TPL exit routine is scheduled only if asynchronous mode is 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TDISCONN 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

1–80     Assembler API Programmer Reference 



TDISCONN 

Completion Information 

The TDISCONN macro instruction completes normally when the corresponding 
disconnect primitive is issued to the transport provider. Connection release is 
immediate. The state of the endpoint is changed to disabled (TSDSABLD) or 
enabled (TSENABLD) in accordance with the value of QLSTN specified in the 
TBIND macro instruction. 

If the new state is: 

■  Enabled, the endpoint can resume receiving connect indication 

■  Disabled, the endpoint can be used to request another connection  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

If the TDISCONN macro instruction completes abnormally, the connection is not 
released or abandoned. The state of the endpoint is unchanged. The general 
return code in register 15, and recovery action code in register zero, indicate the 
nature of the failure. The TPL return code field may also contain a specific error 
code that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TDISCONN return codes. 
The values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY 

 TAINTEG TEPROTO  TEDISCON 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN 
TESTOP TETERM TEUNSUPO 
TEUNSUPF 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT  TEBDDATA 

 TAPROCED TEAMODE  TESTATE TEINCMPL 

Assembler Language Macro Instructions    1–81 



TDISCONN 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely 
due to corrupted data areas maintained within 
the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Usage Information 

The TDISCONN macro instruction is used to request the immediate release of an 
established connection, or to abandon a pending connection request previously 
initiated with a TCONNECT macro instruction.  

The TDISCONN macro instruction causes the abortive release of a connection. 
That is, the release is immediate, and any unsent data buffered at the endpoint is 
discarded. If it is important that all previously sent data reach the remote 
transport user, the application program should use an orderly release initiated 
with a TRELEASE macro instruction, or implement a session-layer protocol to 
gracefully terminate the session.  

The TDISCONN macro instruction is normally issued when the endpoint is in 
the connected (TSCONNCT) state. The connection may have been established in 
client mode using the TCONNECT and TCONFIRM macro instructions, or 
established in server mode using the TLISTEN and TACCEPT macro 
instructions. When control is returned to the application program, the endpoint 
is considered disconnected, and is returned to the state that existed before the 
connection was established.  

■  If the application program is operating in client mode, the endpoint returns 
to the disabled (TSDSABLD) state, and another connection request can be 
initiated 

■  If the application program is operating in as a multithreaded server, the 
endpoint is also returned to the disabled state, and can be reused for 
accepting new connections 

1–82     Assembler API Programmer Reference 



TDISCONN 

■  If the application program is operating as a single-threaded server, the 
endpoint is returned to the enabled (TSENABLD) state, and listening for 
another connect indication can resume 

The TDISCONN macro instruction can also be used to abandon a connection 
request that has not yet been confirmed. This situation may occur when the 
application program has issued a TCONNECT macro instruction, and has not 
received a connect confirmation.  

Example The remote transport user may be slow in responding, or the confirmation may 
be delayed because of congestion or other network problems. In this case, the 
endpoint must be in the connect-in-progress (TSOUCONN) state when the 
TDISCONN macro instruction is issued, and enters the disabled (TSDSABLD) 
state when the macro instruction completes.  

Connected endpoints normally operate in connection mode. However, if an 
association was established with a remote transport user, the endpoint may be 
operating in connectionless mode, and the TDISCONN macro instruction may be 
issued to terminate this association.  

The application program may then: 

■  Create a new association 

■  Begin sending and receiving datagrams with the TSENDTO and TRECVFR 
macro instructions 

■  Unbind the protocol address and close the endpoint 

Assembler Language Macro Instructions    1–83 



TDSECT 

TDSECT  
Generate the API Dummy Control Sections—The TDSECT macro instruction is 
used to generate DSECTs for the API data structures that must be created, 
managed, or referenced by the application program.  
[ symbol ] TDSECT ( [,TEM] 
                    [,TIB] 
                    [,TPA] 
                    [,TPL] 
                    [,TPO] 
                    [,TPL] 
                    [,TPO] 
                    [,TSW] 
                    [,TUB] 
                    [,TPO] 
                    [,TXL] 
                    [,TXP] 
                    [,ALL] ) 

DSECT Types A list of DSECTs (dummy control sections) that should be generated 
during assembly of the application program. Each operand is the name of 
an API data structure. 

Valid operands: 

 TEM—Defines the structure and content of an Transport Error Message 
returned by the TERROR macro instruction. The information returned is 
formatted as a multi-line WTO parameter list, and can be supplied directly 
to a WTO macro instruction. The application program may use this DSECT 
to manipulate certain fields within the parameter list (for example, route 
codes and message descriptors).  

 TIB—Defines the structure and content of a Transport Protocol Information 
Block (TIB). The TIB contains basic transport protocol information returned 
by the TINFO macro instruction when OPTCD=PRIMARY is indicated. 
The format of this information is standard for all transport providers, and 
is intended to convey the basic characteristics of the underlying transport 
protocol and service.  

 TPA—Defines the structure and content of a Transport Protocol Address 
(TPA) in a particular communications domain. The domain can be 
specified with the DOMAIN operand, and should be consistent with 
domain specified when endpoints are opened (see TOPEN).  

 TPL—Defines the structure and content of a Transport Service Parameter 
List (TPL). The TPL is the primary API data structure for passing 
information between the application program and the API routines. All 
TPL-based macro instruction operands are stored or anchored in the TPL. 

1–84     Assembler API Programmer Reference 



TDSECT 

 TPO—Defines the structure and content of Transport Protocol Options 
(TPO) supported by a particular transport provider. The transport provider 
is identified by the communications domain that it services, and is 
indicated by the DOMAIN operand on the TDSECT macro instruction. The 
value specified should be consistent with the communications domain 
specified when endpoints are opened (see TOPEN).  

 TSW—Defines the structure and content of a Transport Endpoint State 
Word (TSW). The TSW contains endpoint state information that is returned 
by the TSTATE macro instruction.  

 TUB—Defines the structure and content of a Transport Endpoint User 
Block (TUB). The TUB contains user ID, group name, and password 
information that are associated with an endpoint for the purpose of 
authorizing access to facilities, and accounting for their use The TUB may 
be provided as an argument of the TOPEN and TUSER macro instructions. 

 TXL—Defines the structure and content of a Transport Endpoint Exit 
List (TXL). The TXL may be provided as a parameter of an AOPEN or 
TOPEN macro instruction, and is used to identify exit routines that are 
to be entered for processing certain asynchronous events. 

 TXP—Defines the structure and content of a Transport Exit Parameter 
List (TXP). The TXP contains parameters and other information passed 
by the API to exit routines that are entered to process asynchronous 
events. The address of the TXP is loaded into register one when the exit 
routine is entered. 

 ALL—Not the name of a structure. It is an indication to generate all of 
the previous DSECTs as if each name had been indicated separately.  

Note: These names should not appear in the operand list more than 
once, and should not be included on more than one TDSECT macro 
instruction.  

Assembler Language Macro Instructions    1–85 



TDSECT 

Completion Information 

The TDSECT macro instruction is declarative and does not generate any 
executable code. The indicated DSECTs are generated at the point in the 
application program where the TDSECT macro instruction occurs.  

Return Codes 

No return codes are generated.  

Usage Information 

The TDSECT macro instruction is used to generate dummy control sections 
(DSECTs) that map the API data structures. Each operand of the macro 
instruction is the: 

■  Name of an API data structure  

■  Label that should appear in a USING statement to establish addressability to 
the data structure  

The API defines several data structures that are shared between the API routines 
and the application program. Some of these structures are created by the 
application program and referenced by the API, others are created by the API 
and referenced by the application program. In all cases, the API routines use the 
same DSECTs to access and manipulate these data structures. If the application 
program does likewise, information that is bound at assembly time can be easily 
changed by reassembly of the application program. 

If the application program manipulates fields in the TPL directly instead of using 
the API macro instructions, the TPL DSECT should always be used to reference 
storage locations. In addition, whenever one of these data structures is created 
dynamically, the symbolic name for the length of the data structure should be 
used for allocating or reserving memory. The API always follows the convention 
that the symbolic name that specifies the length is the structure name appended 
with the characters LEN.  

Example The length of a standard format TPL is defined by the symbol TPLLEN.  

The application program should be careful not to use any assembly language 
labels that conflict with labels defined by these DSECTs. The API labels always 
begin with the letter T.  

1–86     Assembler API Programmer Reference 



TERROR 

TERROR 
Analyze Error and Generate Error Message—The TERROR macro instruction is 
used to analyze an error associated with a previous TPL-based macro instruction, 
and to generate an error message describing the error that can be written to a log 
data set, or displayed to the system operator or local user.  
[symbol ]  TERROR  [ VERBATIM | SUMMARY, ] MF = ( E, tpl_address ) 

VERBATIM | SUMMARY  Type of message to generate.  

VERBATIM a literal message is generated that contains the actual 
values of TPL fields and other information that may be useful in 
diagnosing the error. 

SUMMARY the TPL is analyzed and a message is generated that 
summarizes the error. 

Default: SUMMARY (generate summary message). 

MF = ( E, tpl_address )  Execute form of the TERROR macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
associated with a request that completed abnormally.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: None (must be coded as indicated). 

Assembler Language Macro Instructions    1–87 



TERROR 

Completion Information 

The TERROR macro instruction completes normally when an error message is 
formatted and ready to be output by the application program. The message is 
returned in a storage area allocated from subpool zero, and is formatted as a 
multi-line message compatible with the WTO and WTP macro instructions.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). Register zero contains the address of a data structure 
(TEM) containing the error message. No information is stored in the TPL, and no 
other information is returned. 

If the TERROR macro instruction completes abnormally, no error message is 
formatted or returned. The TPL or TPL address may be corrupted, and should 
not be reused. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field is not 
modified, and contains the information returned by the previous TPL-based 
macro instruction.  

Note: The SYNAD or LERAD exit routines are not entered when the TERROR 
macro instruction completes abnormally.  

Return Codes 

The following table lists the symbolic names for the TERROR return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General Return 
Code  
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific  
Error Code  

TROKAY  TEM address n/a  

TRFAILED  TATPLERR  

TAENVIRO 

n/a 

TEUNSUPO 
TERSOURC 

TRFATLFC  func. code n/a  

TRFATLPL  diag. code n/a  

TRFATLAM  diag. code n/a  

TRFATLAP  diag. code n/a  

1–88     Assembler API Programmer Reference 



TERROR 

Usage Information 

The TERROR macro instruction is used to generate an error message after a TPL-
based macro instruction completes abnormally. The application program should 
display the message to the system or network operator, or log it for later 
inspection.  

The following types of messages can be generated: 

■  Indicated by VERBATIM coded in the first positional operand field, contains 
diagnostic information extracted from the TPL and other API data structures. 
This message provides a verbatim description of the error.  

■  Indicated by SUMMARY, and consists of a summary message based on an 
analysis of the TPL. This is more appropriate for displaying to a non-
technical user of the application program.  

Note: The SUMMARY format is not implemented at this time. 

The TERROR macro instruction should be executed after a TPL-based macro 
instruction completes abnormally with a general return code of four 
(TRFAILED), and a recovery action code less than 24 (TATPLERR). If the 
recovery action code was TATPLERR, no information was stored in the TPL 
return code field, and the error message generated is not meaningful. If the 
general return code was greater than four (TRFATLFC, TRFATLPL, TRFATLAM, 
and TRFATLAP), a fatal error occurred. Issuing the TERROR macro instruction 
in the latter case probably results in a similar error.  

The message is returned in a storage area allocated from subpool zero. The 
message itself is formatted as a multi-line WTO parameter list. The TEM DSECT 
generated by the TDSECT macro instruction maps the storage area, and can be 
used to modify fields in the parameter list before a WTO or WTP macro 
instruction is issued. Alternatively, the application program can extract the 
message from the parameter list, and output it using whatever means is 
appropriate. The storage area should be freed when it is no longer required. The 
first fullword in the storage area contains the subpool and length of the storage 
area.  

Example This example shows how the TERROR macro instruction is intended to be used. 
It is assumed that register 1 contains the address of a TPL that completed 
abnormally:  
TERROR VERBATIM,MF=(E,(1)) 
LTR 15,15  
BNZ SKIPWTO  
LR 2,0  
XR 0,0 

USING TEM,2  
WTO MF=(E,TEMWTO)  
L 0,TEMSL  
FREEMAIN R,LV=(0),A=(2)  

Assembler Language Macro Instructions    1–89 



TERROR 

Format of a Verbatim Message 

The format of a verbatim message is fixed. This is an example of verbatim 
message format:  
T01API001I Transport endpoint error  

        JOB jjjjjjjj STEP ssssssss APPL aaaaaaaa USER uuuuuuuu  
        TPL xxxxxxxx APCB xxxxxxxx QLSN xxxxxxxx  
        SEPM STAT xx TSTAT xx (xxxxxxxx) 
        TPL IDENT xx FNCCD xx (ffffffff) ACTIV xx FLAGS xx  
        TPL ACTCD xx ERRCD xx (eeeeeeee) DGNCD xxxx (mmmmmmmm)  
        TPL EPID xxxxxxxx ECBXR xxxxxxxx OPTCD xxxxxxxx  
        TPL PARM1 xxxxxxxx PARM2 xxxxxxxx PARM3 xxxxxxxx  
        TPL ADBUF xxxxxxxx DABUF xxxxxxxx OPBUF xxxxxxxx  
        TPL ADLEN xxxxxxxx DALEN xxxxxxxx OPLEN xxxxxxxx  

Upper case fields are generated exactly as shown. Lower case fields are edited 
from information contained in the API data structures. Edit fields containing 
lower case x’s (for example, xxxxxxxx) represent hexadecimal values. All other 
fields contain alphanumeric character strings. Each line of the message is 
described separately: 

Line 1 Appears exactly as shown, and identifies the message as being a verbatim error 
message.  

Line 2 Contains the job name (JOB), step name (STEP), application name (APPL), and 
endpoint user name (USER) associated with the endpoint and TPL.  

Line 3 Contains the TPL address (TPL), APCB address (APCB), number of pending 
connect indications (QLSN).  

Line 4 Contains the endpoint state word consisting of the internal state (SEPM STAT) 
and the current TLI state (TSTAT).  

ssssssss is the TSW symbolic name for the current state value.  

Line 5 Contains TPL fields consisting of the TPL control block identifier (IDENT), the 
function code (FNCCD), the active semaphore (ACTIV), and various flag bits 
(FLAGS).  

ffffffff is the TPL symbolic name for the function code.  

Line 6 Contains the TPL return code consisting of the recovery action code (ACTCD), 
the specific error code (ERRCD), and the diagnostic code (DGNCD).  

eeeeeeee is the TPL symbolic name for the specific error code 

mmmmmmmm is the module name that generated the error (derived from 
diagnostic code).  

1–90     Assembler API Programmer Reference 



TEVNTLST 

Line 7 Contains TPL fields consisting of the endpoint identifier (EPID), the ECB or 
completion exit routine address (ECBXR), and option codes (OPTCD). 

Line 8 Contains the three TPL fixed-length parameters (PARM1, PARM2, and PARM3). 

Line 9 Contains the addresses of the three variable-length parameters–the protocol 
address (ADBUF), user data (DABUF), and protocol options (OPBUF).  

Line 10 Contains the length of each variable-length parameter whose address appears in 
the line above (ADLEN, DALEN, and OPLEN).  

The TERROR macro instruction should not be issued after a TOPEN failure. If 
this is attempted, unpredictable results occur. 

TEVNTLST 
Create an Event List—The TEVNTLST macro instruction associates an exit list 
with an endpoint via a TOPEN macro instruction or allows ECBs to be specified 
for protocol event and TPEND notifications. 
TEVNTLST [,CONNECT = (address, ECB | EXIT)] 
                [,CONFIRM = (address, ECB | EXIT)] 
         [,DATA = (address, ECB | EXIT)] 
         [,XDATA = (address, ECB | EXIT)] 
         [,DGERR = (address, ECB | EXIT)] 
         [,DISCONN = (address, ECB | EXIT)] 
         [,RELEASE = (address, ECB | EXIT)] 
         [,SENDWIND=(address, ECB | EXIT)] 
         [,TPEND = (address, ECB | EXIT)] 
         [,MF = ( L | M [, exit_list_address] ) ] 

CONNECT = (address, ECB | 
EXIT) 

CONFIRM = (address, ECB | 
EXIT) 

DATA = (address, ECB | EXIT)  

XDATA = (address, ECB | EXIT) 

DGERR = (address, ECB | EXIT) 

DISCONN = (address, ECB | 
EXIT) 

RELEASE = (address, ECB | 
EXIT) 

SENDWIND = (address, ECB | 
EXIT) 

First subparameter specifies the address of a routine to be entered or an 
ECB to be posted when certain asynchronous protocol events occur.  

If an exit routine is used, the second parameter specifies whether the 
first subparameter is an ECB or an exit address. The address of a 
parameter list (mapped by the TXP DSECT) is passed to the routine in 
register one.  

An event code (TXPEVENT) stored in the parameter list by the API 
identifies the event when the same exit routine is used to handle more 
than one protocol event.  

Refer to Event Codes for defined event codes. 

Default: Zero (no exit routine).  

Assembler Language Macro Instructions    1–91 



TEVNTLST 

TPEND = (address, ECB | EXIT) First subparameter specified the address of a routine to be entered 
or an ECB to be posted when the transport provider terminates and 
can no longer provide service to the application program.  

If an exit routine is used, the second parameter specifies whether the 
first subparameter is an ECB or an exit address. The address of a 
parameter list (mapped by the TXP DSECT) is passed to the routine 
in register one. 

A reason code (TXPREASN) stored in the parameter list by the API 
identifies the reason for termination of service.  

Refer to Event Codes for defined event codes. 

Default: Zero (no TPEND exit routine).  

MF = ( L | M [ exit_list_address ] ) List or modify form of the TEVNTLST macro instruction. The 
second sublist operand, exit_list_address, is the address of a storage 
area that contains (MF=M), or will contain (MF=L), the exit list 
(TXL).  

If the exit list address is not provided, or the MF operand is not 
coded, the exit list is generated in line with the macro instruction.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: Not indicated (nonreentrant, inline list). 

1–92     Assembler API Programmer Reference 



TEVNTLST 

Event Codes 

This section lists the event codes passed to the CONNECT, CONFIRM, DATA, 
XDATA, DGERR, DISCONN, RELEASE, and SENDWIND exit routines. 
 

Name Dec Hex Exit Protocol Event  

TXPECONN 0 X' CONNECT Connect indication. 

TXPECONF 4 X' CONFIRM Confirm indication. 

TXPEDATA 8 X' DATA  Normal data indication.  

TXPEXPDT 12 XC' XDATA Expedited data indication.  

TXPERROR 16 X' DGERR Datagram error indication. 

TXPEDISC 20 X' DISCONN Disconnect indication.  

TXPERLSE 24 X' RELEASE Orderly release indication.  

TXPESWIN 28 X’12’ SENDWIND Send Window Opened. 

TPEND Reason Codes 

The following table lists the reason codes for TPEND calls. A reason code 
(TXPREASN) stored in the parameter list by the API identifies the reason for 
service termination. 
 

Name Dec Hex Explanation  

TXPRDRAN 0 X' Operator drained subsystem . 

TXPRSTOP 4 X' Operator stopped subsystem. 

TXPRTERM 8 X' Subsystem abnormally terminated. 

Assembler Language Macro Instructions    1–93 



TEVNTLST 

Completion Information 

If the MF operand is not coded, or MF=L is indicated (without TXL address), the 
exit list is generated at assembly time, and no executable code is expanded.  

Otherwise, the macro instruction expansion contains executable code to generate 
or modify the exit list at the location specified by the application program. The 
general return code returned in register 15 is always zero (TROKAY). No other 
information is returned.  

Return Codes 

No error codes are generated.  

Usage Information 

The TEVNTLST macro instruction builds a list of the address supplied by the 
TEVNTLST operands. Each address identifies an application program routine 
that will be given control, or ECB to post, when the respective event occurs.  

The list created by TEVNTLST is referenced by the TOPEN parameter 
EVENTLST. The structure of the event list is the same as the exit list built by the 
TOPEN form of TEXLST. An additional set of flags indicates whether each 
address is the address of an exit routine or an ECB. 

Empty slots are created for operands that are not coded on the TEVNTLST macro 
instruction. Empty slots are set to zero, indicating that no exit routine was 
specified. The application program can use the modify form of the TEVNTLST 
macro instruction to update an event list after it is created. The event list must be 
aligned on a fullword boundary.  

The address of the event list is provided as a parameter to the TOPEN macro 
instruction. When the endpoint is opened, the event list is permanently linked to 
the transport user or endpoint. When an event occurs that may require 
processing by the application program, the event list linked to the endpoint is 
checked first to see if an exit routine or ECB is defined. If so, the exit routine is 
entered to process the event or the respective ECB is posted. Otherwise, the exit 
list linked to the APCB is checked. If no exit routine or ECB is defined, the 
occurrence of the event must be detected by some other means (generally via 
return codes stored in the TPL). 

1–94     Assembler API Programmer Reference 



TEXEC 

When the APCB or endpoint is opened, a copy of the event list or exit list is 
saved. Therefore, exit routines and ECBs associated with a transport user or any 
one of its endpoints cannot be changed once the APCB is opened, or the endpoint 
created. However, if control of an endpoint is passed to another task or address 
space, a new event list can be specified via the TOPEN macro instruction that 
acquires control of the endpoint.  

See TCPaccess Assembler API Concepts for a detailed discussion of exit routines 
and a listing of TXL DSECT that maps the event list. 

TEXEC 
Execute a Transport Service Parameter List—A Transport Service Parameter List 
(TPL) that was initialized, or used to make a previous request, can be executed or 
reexecuted using the TEXEC macro instruction. Issuing the TEXEC macro 
instruction with a function code is functionally equivalent to issuing the macro 
instruction indicated by the function code. 

The TEXEC macro instruction accepts all operands defined for other TPL-based 
macro instructions, plus those defined in this topic. The precise definition and 
use of a particular operand depends on the value indicated for FNCCD. Refer to 
the macro instruction description for the indicated function to determine which 
operands can be coded, and how they are used.  

Assembler Language Macro Instructions    1–95 



TEXEC 

[ symbol ] TEXEC [ EP = endpoint_id ] 
                 [ ,ADLEN = protocol_address_length ] 
                 [ ,ADBUF = protocol_address_address ] 
                 [ ,ADALET = protocol_address_alet ] 
                 [ ,DALEN = user_data_length ]  
                 [ ,DABUF = user_data_address ] 
                 [ ,DAALET = user_address_alet ] 
                 [ ,OPLEN = protocol_options_length ] 
                 [ ,OPBUF = protocol_options_address ] 
                 [ ,OPALET = protocol_options_alet ] 
                 [ ,QLSTN = listen_queue_length ] 
                 [ ,NEWEP = new_endpoint_id ] 
                 [ ,SEQNO = sequence_number ] 
                 [ ,USER = endpoint_userid ] 
                 [ ,TCB = task_control_block_address ] 
                 [ ,ASCB = address_space_control_block_address ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TRUNC | NOTRUNC ] 
                              [ ,NEGOT | NONEGOT ] 
                              [ ,BLOCK | NOBLOCK ] 
                              [ ,ASSIGN | USE ] 
                              [ ,LOCAL | REMOTE ] 
                              [ ,PRIMARY | SECNDRY | STATS ] 
                              [ ,DECLARE | VERIFY | QUERY | DEFAULT ] 
                              [ ,TP | API ] 
                              [ ,MORE | NOMORE ] 
                              [ ,NORMAL | EXPEDITE ] 
                              [ ,EOM | NOTEOM ] 
                              [ ,DIRECT | INDIR ] 
                              [ ,ABORT | CLEAR ] 
                              [ ,DELETE | PASS ] 
                              [ ,TUB | ACEE ] 
                              [ ,PLAIN | CIPHER ] 
                              [ ,MBUF | NOMBUF ] 
                              [ ,FULL | NOFULL ] 
                              [ ,TIMEOUT | NOTIMEOUT ] ) ] 
                 [ ,FNCCD = TACCEPT | TADDR | TBIND | TCLEAR | 
                            TCLOSE | TCONFIRM | TCONNECT | 
                            TDISCONN | TINFO | TLISTEN | TOPTION | 
                            TRECV | TRECVERR | TRECVFR | TREJECT | 
                            TRELACK | TRELEASE | TRETRACT | TSEND |  
                            TSENDTO | TUNBIND | TUSER  
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( G | E , tpl_address ) ] 
                 [ ,MF = ( I | G | E , [ tpl_address ] ) ] 

1–96     Assembler API Programmer Reference 



TEXEC 

FNCCD = function_code  The API function to execute.  

Valid values are:  

TACCEPT Accept connection request. 

TADDR Get protocol address.  

TBIND  Bind local protocol address. 

TCLEAR Clear disconnect indication. 

TCLOSE Close endpoint. 

TCONFIRM Receive connect confirmation. 

TCONNECT Initiate connection request. 

TDISCONN Initiate abortive disconnect.  

TINFO  Get transport protocol information. 

TLISTEN Listen for connect indications. 

TOPTION Endpoint option management.  

TRECV  Receive from connected transport user. 

TRECVERR Receive datagram error indication. 

TRECVFR Receive a datagram. 

TREJECT Reject connection request. 

TRELACK Acknowledge orderly release indication. 

TRELEASE Initiate or complete orderly release. 

TRETRACT Retract a pending TLISTEN request.  

TSEND  Send to connected transport user. 

TSENDTO Send a datagram. 

TUNBIND Unbind local protocol address. 

TUSER  Associate user with endpoint. 

 If a function code is specified, the definition and use of other operands is 
determined by the designated function.  

The operands that may be coded, and the rules that apply, are the same as 
those defined for the API macro instruction that corresponds to the 
function code. If a function code is not specified, the value stored in the 
TPL designates the function to execute. 

Default: Not indicated (use function code in TPL). 

Assembler Language Macro Instructions    1–97 



TEXEC 

MF = ( I | G | E ,  
[ tpl_address ] )  

Standard, generate, or execute form of the TEXEC macro instruction.  

The second sublist operand, tpl_address, is the address of a storage area that
contains (MF=E), or contains (MF=G), the Transport Function Parameter 
List (TPL). If the MF operand is not coded, an inline list and subroutine 
linkage is generated.  

If the list or modify form is desired, use the TPL macro instruction.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form)  

Completion Information 

Completion information is determined by the API function executed, and is 
defined in the section describing the macro instruction corresponding to the 
function executed. 

In general, on normal return to the application program, register 15 contains zero 
(TROKAY) and register zero contains a conditional completion code, or zero 
(TCOKAY) if there was no conditional completion. On abnormal return, register 
15 contains the general return code (unless modified by the SYNAD or LERAD 
exit routine), and register zero contains the recovery action code. The recovery 
action code and a specific error code may also be stored in the return code field 
of the TPL.  

1–98     Assembler API Programmer Reference 



TEXEC 

Return Codes 

The following table lists the symbolic names for the TEXEC return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. These return codes are common to all API TPL-based macro 
instructions: 

Note: For a description of the return codes that apply to a specific function, refer 
to the description of the macro instruction that corresponds to the function. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY  TAOKAY  TCOKAY  

TRFAILED  TAENVIRO  TESYSERR  TESUBSYS TEDRAIN 
TESTOP  TETERM 

 TAFORMAT  TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  

 TATPLERR  TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely
due to corrupted data areas maintained within 
the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Assembler Language Macro Instructions    1–99 



TEXEC 

Usage Information 

The TEXEC macro instruction is used to execute a Transport Service Parameter 
List (TPL) that was generated, or to reexecute a TPL that was been previously 
executed. The TEXEC macro instruction is complementary with the TPL macro 
instruction used to generate or modify a TPL.  

The API macro instructions use the same inner macro instructions to generate the 
macro expansion. Therefore, except for functions performed in the outer most 
macro instruction, the TEXEC macro instruction used with a function code is 
functionally equivalent to the macro instruction that corresponds to the 
particular function.  

Example 1 The macro instruction TEXEC QLSTN=5,FNCCD=TBIND,MF=(E,BINDTPL) 
generates the same expansion as TBIND QLSTN=5,MF=(E,BINDTPL).  

In fact, the TEXEC macro instruction can be used to generate any TPL-based 
request other than TERROR, TCHECK, TSTATE, and TOPEN.  

Most of the function-dependent validity checking is performed by the outer 
macro instruction (TBIND in the previous example). Therefore, the application 
programmer should be cautious when using the TEXEC macro instruction to 
make arbitrary requests.  

Example 2 This macro instruction expands successfully at assembly time, but probably 
completes abnormally at runtime:  
TEXEC QLSTN=5,FNCCD=TRECV,MF=(E,BINDTPL)  

Whereas, this equivalent macro instruction fails at assembly time:  
TRECV QLSTN=5,MF=(E,BINDTPL) 

1–100     Assembler API Programmer Reference 



TEXLST 

TEXLST 
Create an Exit List—The TEXLST macro instruction is used to create an exit list 
that can be associated with a transport user via an AOPEN macro instruction, or 
associated with an endpoint via a TOPEN macro instruction.  
[ symbol ] TEXLST [ AOPEN | TOPEN ] 
                  [ ,SYNAD = exit_routine_address ] 
                  [ ,LERAD = exit_routine_address ] 
                  [ ,CONNECT = exit_routine_address ] 
                  [ ,CONFIRM = exit_routine_address ] 
                  [ ,DATA = exit_routine_address ] 
                  [ ,XDATA = exit_routine_address ] 
                  [ ,DGERR = exit_routine_address ] 
                  [ ,DISCONN = exit_routine_address ] 
                  [ ,RELEASE = exit_routine_address ] 
                  [ ,SENDWIND = exit_routine_address ] 
                  [ ,TPEND = exit_routine_address ] 
                  [ ,APEND = exit_routine_address ] 
                  [ ,MF = ( L | M [ ,exit_list_address ] ) ] 

AOPEN | TOPEN  Indicates whether the exit list is associated with a transport user or a 
particular endpoint.  

AOPEN the exit list is linked to the APCB with an AOPEN macro 
instruction. 

TOPEN the exit list is linked to an endpoint via a TOPEN macro 
instruction. Since the exit routines associated with an endpoint are a 
subset of those defined for the APCB, this operand also determines the 
maximum length of the exit list.  

Default: AOPEN (exit list linked via APCB). 

SYNAD = exit_routine_address  Address of a routine to be entered if a physical error or other unusual 
condition occurs during the processing of a TPL-based request. Invalid 
requests and logic errors are handled by the LERAD exit routine.  

A recovery action code is passed to the exit routine in register zero, and 
a copy is stored in the return code field of the TPL associated with the 
request. A specific error code is also stored in the return code field. The 
address of the TPL is passed in register one.  

See Recovery Action Codes for SYNAD Routine Entry for the recovery 
action codes that cause the SYNAD routine to be entered.  

Default: Zero (no SYNAD exit routine). 

Assembler Language Macro Instructions    1–101 



TEXLST 

LERAD = exit_routine_address  Address of a routine entered when the application program issues a 
TPL-based request that results in a logic error. Physical errors or other 
unusual conditions are handled by the SYNAD exit routine.  

A recovery action code is passed to the exit routine in register zero, and 
a copy is stored in the return code field of the TPL associated with the 
request. A specific error code is also stored in the return code field.  

However, if the recovery action code is 24 (TATPLERR), the TPL may be 
active or corrupted, and no information is stored in the return code field.
The address of the TPL is passed in register one. See Recovery Action 
Codes For LERAD Routine Entry for a list of recovery action codes that 
cause the LERAD routine to be entered. 

Default: Zero (no LERAD exit routine). 

CONNECT = 
exit_routine_address  
CONFIRM = exit_routine_address
DATA = exit_routine_address  
XDATA = exit_routine_address  
DGERR = exit_routine_address  
DISCONN = exit_routine_address 
RELEASE = exit_routine_address  
SENDWIND = 
exit_routine_address  

Address of a routine to enter when certain asynchronous protocol events
occur.  

The address of a parameter list (mapped by the TXP DSECT) is passed to
the routine in register one. An event code (TXPEVENT) stored in the 
parameter list by the API identifies the event when the same exit routine 
is used to handle more than one protocol event. 

 Refer to Event Codes for defined event codes. 

Default: Zero (no exit routine) . 

TPEND = exit_routine_address  Address of a routine to enter when the transport provider terminates 
and can no longer provide service to the application program.  

The address of a parameter list (mapped by the TXP DSECT) is passed to
the routine in register one. A reason code (TXPREASN) stored in the 
parameter list by the API identifies the reason for termination of service. 

See TPEND Reason Codes to view a list of defined reason codes. 

Default: Zero (no TPEND exit routine). 

1–102     Assembler API Programmer Reference 



TEXLST 

APEND = exit_routine_address  Address of a routine to enter when the API subsystem terminates and 
can no longer provide service to the application program.  

The address of a parameter list (mapped by the TXP DSECT) is passed to
the routine in register one. A reason code (TXPREASN) stored in the 
parameter list by the API identifies the reason for termination of service. 

Default: Zero (no APEND exit routine). 

MF = ( L | M , [ exit_list_address 
] )  

List or modify form of the TEXLST macro instruction.  

The second sublist operand, exit_list_address, is the address of a storage 
area that contains (MF=M), or will contain (MF=L), the exit list.  

If the exit list address is not provided, or the MF operand is not coded, 
the exit list is generated in line with the macro instruction.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: Not indicated (nonreentrant, inline list). 

Recovery Action Codes 

The following tables list the recovery action codes for SYNAD and LERAD 
routine entry. The values associated with the symbolic names can be found in the 
TPL macro expansion. These return codes are common to all API TPL-based 
macro instructions: 
 

Name Dec Hex Explanation  

TAEXCTPN 4 X' Exceptional condition. 

TAINTEG 8 X' Connection or data integrity error. 

Recovery Action 
Codes for SYNAD 
Routine Entry 

TAENVIRO 12 XC' Environmental condition. 
 

Assembler Language Macro Instructions    1–103 



TEXLST 

Name Dec Hex Explanation  

TAFORMAT 16 X' Format or specification error. 

TAPROCED 20 X' Sequence or procedural error. 

Recovery Action 
Codes For LERAD 
Routine Entry 

TATPLERR 24 X' Logic error with no TPL return 
code. 

Event Codes 

The following table lists the event codes passed to the CONNECT, CONFIRM, 
DATA, XDATA, DGERR, DISCONN, RELEASE, and SENDWIND exit routines. 
The values associated with the symbolic names can be found in the TXP macro 
expansion. 
 

Name Dec Hex Exit Protocol Event  

TXPECONN 0 X' CONNECT Connect indication. 

TXPECONF 4 X' CONFIRM Confirm indication.  

TXPEDATA 8 X' DATA  Normal data indication. 

TXPEXPDT 12 XC' XDATA Expedited data indication. 

TXPERROR 16 X' DGERR Datagram error indication.  

TXPEDISC 20 X' DISCONN Disconnect indication. 

TXPERLSE 24 X' RELEASE Orderly release indication. 

TXPESWND 28 X’18’ SENDWIND Send Window opened. 

1–104     Assembler API Programmer Reference 



TEXLST 

APEND and TPEND Reason Codes 

The following tables list the reason codes for TPEND and APEND calls. A reason code (TXPREASN) 
stored in the parameter list by the API identifies the reason for termination of service. 

 

TPEND Reason Codes 
Name Dec Hex Explanation  

TXPRDRAN 0 X' Operator drained subsystem. 

TXPRSTOP 4 X' Operator stopped subsystem.  

TXPRTERM 8 X' Subsystem abnormally terminated.  
 

APEND Reason 
Codes 

Name Dec Hex Explanation  

TXPRDRAN 0 X' Operator drained subsystem. 

TXPRSTOP 4 X' Operator stopped subsystem.  

TXPRTERM 8 X' Subsystem abnormally terminated.  

Completion Information 

If the MF operand is not coded, or MF=L is indicated (without exit_list_address 
(TXL) address), the exit list is generated at assembly time, and no executable 
code is expanded.  

Otherwise, the macro instruction expansion contains executable code to generate 
or modify the exit list at the location specified by the application program. The 
general return code returned in register 15 is always zero (TROKAY). No other 
information is returned.  

Return Codes 

No error codes are generated.  

Assembler Language Macro Instructions    1–105 



TEXLST 

Usage Information 

The TEXLST macro instruction builds a list of exit routine addresses. Each 
operand in this macro instruction represents a class of events for which an exit 
routine can be entered by the API.  

The address supplied for each operand identifies an application program routine 
to be given control when a particular event occurs.  

Example The SYNAD operand supplies the address of a routine that handles exceptional 
or unusual conditions (other than logic errors) for TPL-based macro instructions, 
and the CONNECT operand supplies the address of a routine that receives 
connect indications. 

The length of the exit list depends on whether it is used with the AOPEN or 
TOPEN macro instruction. Some exit routines defined in the AOPEN exit list 
cannot be specified in a TOPEN exit list. Therefore, an AOPEN exit list is longer 
than a TOPEN exit list. A length parameter generated at the start of an exit list 
indicates the type of exit list, and is validity checked at execution time when 
referenced with an AOPEN or TOPEN macro instruction.  

Empty slots are created for operands that are not coded on the TEXLST macro 
instruction. Empty slots are set to zero, indicating that no exit routine was 
specified. The application program can use the modify form of the TEXLST 
macro instruction to update an exit list after it is created. The exit list must be 
aligned on a fullword boundary.  

The address of the exit list is provided as a parameter to the AOPEN or TOPEN 
macro instruction. When the APCB or endpoint is opened, the exit list is 
permanently linked to the transport user or endpoint. When an event occurs that 
may require processing by the application program, the exit list linked to the 
endpoint is checked first to see if an exit routine is defined. If so, the exit routine 
is entered to process the event. Otherwise, the exit list linked to the APCB is 
checked. If no exit routine is defined, the occurrence of the event must be 
detected by some other means (generally via return codes stored in the TPL). 

When the APCB or endpoint is opened, a copy of the exit list is saved. Therefore, 
exit routines associated with a transport user or any one of its endpoints cannot 
be changed once the APCB is opened, or the endpoint created. However, if 
control of an endpoint is passed to another task or address space, a new exit list 
can be specified via the TOPEN macro instruction that acquires control of the 
endpoint.  

Refer to the TCPaccess Planning Guide for a detailed discussion of exit routines. 
The exit list is mapped by the TXL DSECT, which is also listed in the appendix 
“Data Structures (Assembler Language)” in the TCPaccess Assembler API Macros 
guide. 

1–106     Assembler API Programmer Reference 



TINFO 

TINFO 
Retrieve Transport Protocol Information—Protocol information associated with 
an endpoint and maintained by the transport provider can be retrieved using the 
TINFO macro instruction.  
[ symbol ] TINFO [ EP = endpoint_id ] 
                 [ ,DALEN = protocol_information_length ] 
                 [ ,DABUF = protocol_information_address ] 
                 [ ,DAALET = protocol_information_alet ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TRUNC | NOTRUNC ] 
                              [ ,PRIMARY | SECNDRY | STATS ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ]  

EP = endpoint_id  Endpoint at which the TINFO macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

DALEN = 
protocol_information_length  

Length (in bytes) of the protocol information storage area identified by 
the DABUF operand. The length is updated when the request is 
completed to reflect the actual length of protocol information returned.  

If the length is zero, the API macro instruction completes abnormally. 

Default: Zero (return no protocol information). 

DABUF = 
protocol_information_address  

Address of a storage area for returning protocol information maintained 
for the designated endpoint. The storage area should be large enough to 
contain the requested information, and can be aligned on any boundary 
convenient to the application program. 

The type of information requested is indicated by the OPTCD operand. 
Only the information indicated by OPTCD=PRIMARY is standardized for 
all transport providers. All other information types are provider-
dependent. The information provided with a OPTCD=PRIMARY request 
can be used to determine the maximum size of the information unit 
returned when designating other information types.  

Default: (no protocol information storage area). 

Assembler Language Macro Instructions    1–107 



TINFO 

DAALET = 
protocol_information_alet 

Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

The DAALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller.  

The DAALET parameter can be used only if OPTCD=EXTEND is also 
specified. 

Default: Zero (the storage is contained in the address space of the called). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TINFO macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TINFO request. The application 
program is responsible for issuing the TCHECK macro instruction.  

Default: SYNC (synchronous mode). 

1–108     Assembler API Programmer Reference 



TINFO 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the protocol information returned to the application 
program by the transport provider should be truncated if it does not fit 
within the storage area provided.  

OPTCD=TRUNC the excess is truncated, and the TINFO macro 
instruction is completed conditionally as long as no other errors occur.  

OPTCD=NOTRUNC nothing is placed in the storage area, and the TINFO 
macro instruction completes abnormally. 

Default: NOTRUNC (no truncation).  

OPTCD = PRIMARY | 
SECNDRY | STATS  

Type of information requested.  

PRIMARY—Designates primary protocol information whose format and 
meaning is standardized for all transport providers. The application 
program can use this information to determine the basic characteristics of 
the transport service and limits of the transport provider.  

SECNDRY—Designates secondary protocol information whose format 
and meaning is specific to the transport service being used. This 
information includes internal protocol and state variables that govern the 
operation of the transport protocol. Transport providers are not required 
to support this option code. Transport providers in the current 
implementation do not support SECNDRY.  

STATS—Designates statistical information recorded by the transport 
provider whose format and meaning is specific to the transport service 
being used. Transport providers are not required to support this option 
code. Transport providers in the current implementation do not support 
STATS.  

Default: PRIMARY (return basic protocol information).  

Assembler Language Macro Instructions    1–109 



TINFO 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TINFO macro instruction associated with this TPL is completed.  

The ECB can be any fullword of storage aligned on a fullword boundary. 
If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address  Address of an exit routine scheduled when the TINFO macro instruction 
associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode is specified. 
In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TINFO macro 
instruction. The second sublist operand, tpl_address, specifies the address 
of the TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form), 

1–110     Assembler API Programmer Reference 



TINFO 

Completion Information 

The TINFO macro instruction completes normally (or conditionally) when the 
requested protocol information is returned in the storage area provided by the 
application program. The length of the storage area is updated to reflect the 
actual amount of information returned. The state of the endpoint is unchanged.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the protocol information returned to the 
application program was truncated to fit in the storage area provided. The TPL 
return code field is set accordingly. No other information is returned.  

If the TINFO macro instruction completes abnormally, no protocol information is 
returned to the application program. The state of the endpoint is unchanged. The 
general return code in register 15, and recovery action code in register zero, 
indicate the nature of the failure. The TPL return code field can also contain a 
specific error code that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TINFO return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY  TCTRUNC 

TRFAILED  TAINTEG TEOVRFLO 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN 
TESTOP  TETERM TEUNSUPO 

 TAFORMAT TEBDFNCD  EBDOPCD TEBDECB 
TEBDEXIT  TEBDDATA 

 TAPROCED TEAMODE  TEINCMPL 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

Assembler Language Macro Instructions    1–111 



TINFO 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address space.

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Usage Information 

The TINFO macro instruction is used to get information from the transport 
provider that is maintained for a specific endpoint. An option code is used to 
indicate what type of information is desired. The information types range from 
basic protocol information that is common to all transport providers, to detailed 
protocol information and statistics that are provider-dependent.  

The basic protocol information is standardized for all transport providers, and is 
requested by indicating PRIMARY with the OPTCD operand. The information 
returned can be used by the application program to determine basic 
characteristics and limits of the transport service.  

Maximum lengths of protocol addresses, connect and disconnect user data, and 
protocol options are provided.  

If storage areas used for returning such information by other macro instructions 
are allocated dynamically using this information, an overflow condition should 
not occur.  

1–112     Assembler API Programmer Reference 



TINFO 

Basic Protocol Information Returned 

The basic protocol information returned is fixed in length (76 bytes), and is 
mapped by the Transport Information Block (TIB) DSECT. The following table 
defines the information returned:  

Note: Each field is designated by the label defined in the TIB DSECT that should 
be used to access it. 
 

TIBTSDOM A one-byte value defining the communications domain within which the 
endpoint was created.  

The value corresponds to the communications domain requested by the TOPEN 
macro instruction. If none was explicitly requested, this value indicates the 
domain that was assigned based on system and installation default values.  

TIBTSTYP  A one-byte value defining the mode of service assigned for the endpoint.  

The value corresponds to the mode of service requested by the TOPEN service 
function. If none was explicitly requested, this value indicates the mode of 
service that was assigned based on system and installation default values.  

TIBTSCHR A flag byte defining one of these various characteristics of the transport service: 

■  Message boundaries are preserved within data stream  

■  Expedited data is supported  

■  The transport provider supports the protocol options parameter  

■  User data can be sent with connection request  

■  User data can be sent with disconnect request 

TIBTSOPT A flag byte indicating one of these additional options supported by the transport 
provider:  

■  Datagram address associations  

■  Orderly release  

■  Secondary protocol information  

■  Statistical information 

TIBSYSID Four-character ID of the MVS subsystem containing the transport service 
provider (or its surrogate).  

The value is the same as the subsystem ID requested by the AOPEN service 
function. If none was explicitly requested, this value is the ID of the MVS 
subsystem that was assigned based on system and installation default values.  

Assembler Language Macro Instructions    1–113 



TINFO 

TIBSVCID  Eight-character ID of the transport service provider managing the endpoint.  

The value is the same as the transport service ID requested by the TOPEN 
service function. If none was provided, this value is the ID of the transport 
service provider that was assigned based on system and installation default 
values.  

TIBPROTO Protocol number of the protocol used to provide the transport service.  

The value is the same as the protocol number requested by the TOPEN service 
function. If none was provided, this value is the protocol number of the protocol 
that was assigned based on system and installation default values.  

Transport Service Limits 

The API uses a general notation for defining limits of the transport service. The 
limit of a particular facility is represented by a signed, integer value.  

■  If the value is greater than zero, the facility is supported by the transport 
provider, and the value is the limit of the facility  

■  If the value is -1, the facility is supported, but there is no limit  

■  If the value is -2, the facility is not supported at all 

A value of zero is sometimes used to represent special characteristics of the 
facility. 

Transport Interface Limits 
 

TIBQLSTN A value greater than zero indicates the maximum number of connect 
indications that can be queued by the transport interface. 

-1 Indicates that there is no limit on the size of the connect indication queue. 

-2  Specifies that the transport interface does not support the queueing of 
connect indications.  

 0 Not returned.  

TIBQSEND A value greater than zero indicates the maximum number of uncompleted send 
requests that can be queued by the transport interface.  

-1 Indicates that there is no limit on the number of send requests. Since the 
transport interface must allow at least one uncompleted send request. 

-2 or 0 Never returned.  

1–114     Assembler API Programmer Reference 



TINFO 

TIBQRECV A value greater than zero indicates the maximum number of uncompleted 
receive requests that can be queued by the transport interface.  

-1 Indicates that there is no limit on the number of receive requests. Since the 
transport interface must allow at least one uncompleted receive request. 

-2 or 0 Never returned.  

TIBLTSND A value greater than zero indicates the maximum number of user data bytes 
that can be transferred by the transport interface with a single send request.  

-1 Indicates that there is no limit on the amount of data in a single send 
request. The transport interface always supports the sending of data. 

-2 or 0 Never returned.  

TIBLTRCV A value greater than zero indicates the maximum number of user data bytes 
that can be transferred by the transport interface with a single receive request.  

-1 Indicates that there is no limit on the amount of data in a single receive 
request. The transport interface always supports the receiving of data. 

-2 or 0 Never returned.  

TIBLSEND A value greater than zero indicates the maximum number of user data bytes 
that can be pending for uncompleted send requests.  

-1 Indicates that there is no limit on the total amount of pending send data.  

-2 or zero Never returned.  

TIBLRECV A value greater than zero indicates the maximum number of user data bytes 
that can be pending for uncompleted receive requests.  

-1  Indicates that there is no limit on the total amount of pending receive data.  

-2 or 0 Never returned.  

Assembler Language Macro Instructions    1–115 



TINFO 

Transport Provider Limits 
 

TIBLADDR A value greater than zero indicates the maximum size of a transport protocol 
address.  

-1 Indicates that there is no limit on the address size. 

-2 Indicates that the transport provider does not provide user access to 
transport protocol addresses.  

 0 Is not returned by the transport provider. 

TIBLOPTN A value greater than zero indicates the maximum number of bytes in the 
protocol options parameter supported by the transport provider.  

-1 Indicates that there is no limit on the size of protocol options. 

-2 Specifies that the transport provider does not support user-specified 
protocol options.  

 0 Is not returned by the transport provider.  

TIBLTSDU A value greater than zero indicates the maximum size of a Transport Service 
Data Unit (TSDU).  

-1 Indicates that there is no limit on the size of a TSDU. 

-2 Indicates that the transfer of normal data is not supported by the 
transport provider.  

 0 Indicates that the transport provider does not support the concept of a 
TSDU, although it does support the sending of a data stream with no 
logical boundaries preserved across the connection.  

TIBLXPDT A value greater than zero indicates the maximum size of an Expedited 
Transport Service Data Unit (ETSDU). 

-1 Indicates that there is no limit on the size of an ETSDU. 

-2 Indicates that the transfer of expedited data is not supported by the 
transport provider.  

  0 Indicates that the transport provider does not support the concept of an 
ETSDU, although it does support the sending of an expedited data 
stream with no logical boundaries preserved across a connection.  

TIBLCONN A value greater than zero indicates the maximum number of bytes of user 
data that can be transferred during connection establishment. 

-1 Indicates that there is no limit on the amount of user data that can be 
transferred. 

-2  Specifies that the transport provider does not support connect user data.  

1–116     Assembler API Programmer Reference 



TINFO 

  0 Is not returned by the transport provider. 

TIBLDISC A value greater than zero indicates the maximum number of bytes of user 
data that can be transferred during connection release.  

-1 Indicates that there is no limit on the amount of user data that can be 
transferred. 

-2 Specifies that the transport provider does not support disconnect user 
data.  

  0 Is not returned by the transprt provider.  

TIBLINFO A value greater than zero indicates the maximum size of an information unit 
returned by the TINFO service function for information types other than 
PRIMARY.  

-1 Indicates that there is no limit on the size of an information unit. 

-2 Indicates that the transport provider does not support any information 
types other than PRIMARY.  

 0 Not returned by the transport provider.  

An application program can minimize its dependence on a particular transport 
provider by using the information defined in the previous tables to determine 
which facilities and options are supported, and the maximum size of variable-
length storage areas used by macro instructions The content and format of the 
remaining information types is provider-dependent. Only PRIMARY 
information is supported by the transport providers in the current 
implementation. 

Assembler Language Macro Instructions    1–117 



TLISTEN 

TLISTEN 
Listen for a Connect Indication—The TLISTEN macro instruction is used to 
listen for connect indications generated by connection requests arriving at an 
endpoint operating in server mode. The endpoint must have been previously 
enabled with a TBIND macro instruction. The protocol address of the remote 
transport user that initiated the connection request is returned by the transport 
provider.  
[ symbol ] TLISTEN [ EP = endpoint_id ] 
                   [ ,ADLEN = protocol_address_length ] 
                   [ ,ADBUF = protocol_address_address ] 
                   [ ,ADALET = protocol_address_alet ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] 
                                [ ,TRUNC | NOTRUNC ] 
                                [ ,BLOCK | NOBLOCK ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E, [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TLISTEN macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address storage area identified by the 
ADBUF operand.  

The length is updated when the request is completed to reflect the actual 
length of the protocol address returned. If the length is zero, the protocol 
address of the calling transport user is not returned to the application 
program.  

Default: Zero (return no protocol address).  

ADBUF = 
protocol_address_address  

Address of a storage area for returning the protocol address of the calling 
transport user.  

The storage area should be large enough to contain the entire address. 
The format of the protocol address is provider-dependent, and its 
maximum size can be determined by issuing a TINFO macro instruction. 
The storage area can be aligned on any boundary.  

Default: Zero (no protocol address storage area).  

1–118     Assembler API Programmer Reference 



TLISTEN 

ADALET = protocol_address_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the ADBUF parameter. 

 The ADALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The ADALET 
parameter may be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix is used to contain ALET address extensions that can 
be specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TADDR macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TLISTEN request. The 
application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode).  

Assembler Language Macro Instructions    1–119 



TLISTEN 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the information returned to the application program by 
the transport provider should be truncated if it does not fit within the 
storage area provided.  

 OPTCD=TRUNC the excess is truncated, and the TLISTEN macro 
instruction is completed conditionally as long as no other errors occur.  

OPTCD=NOTRUNC nothing is placed in the storage area, and the 
TLISTEN macro instruction is completed abnormally. 

Default: NOTRUNC (no truncation). 

OPTCD = BLOCK | NOBLOCK Indicates whether the issuing task can be suspended if the TLISTEN 
macro instruction cannot be completed immediately.  

OPTCD=BLOCK (and no connect indicated is generated) the issuing task 
is suspended until a connection request arrives. 

OPTCD=NOBLOCK the macro instruction is completed immediately, and
an abnormal return code indicates that the task would have been 
suspended for an indefinite period of time. 

The TLISTEN macro instruction can be used to poll for new connect 
indications. If a connect indication is available, the request is completed as
usual. Otherwise, the request is completed abnormally and the transport 
user can try again after delaying an appropriate period of time. 

 In either case, if a connect indication was generated, the TLISTEN macro 
instruction completes normally without suspending the issuing task.  

Default: BLOCK (suspend issuing task if necessary). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when 
the TLISTEN macro instruction associated with this TPL is completed. 
The ECB can be any fullword of storage aligned on a fullword boundary. 
If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

1–120     Assembler API Programmer Reference 



TLISTEN 

EXIT = tpl_exit_routine_address  Address of an exit routine to schedule when the TLISTEN macro 
instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode has been 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TLISTEN macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to
use for this request. If no MF operand is specified, the standard form is 
used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

Completion Information 

The TLISTEN macro instruction completes normally (or conditionally) when a 
connect indication is pending, and the information accompanying the connection 
request has been returned to the application program. If the number of pending 
indications is one, the state of the endpoint is changed from enabled 
(TSENABLD) to connect-indication-pending (TSINCONN). Otherwise, connect 
indications were already pending, and the state is not changed.  

If a storage area was provided by the application program, the protocol address 
of the calling transport user is returned. The corresponding length of the address 
buffer storage area is updated to reflect the actual amount of information 
returned.  

A sequence number that identifies the connect indication is returned in the 
TPLSEQNO field of the TPL associated with this request. If more connect 
indications have been generated, and are waiting to be received by the 
application program, TOMORE is set in TPLOPCD2, and the number of available 
connect indications is returned in the TPLCOUNT field of the TPL.  

Assembler Language Macro Instructions    1–121 



TLISTEN 

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the information returned to the application 
program was truncated to fit in the storage area provided. The TPL return code 
field is set accordingly. No other information is returned.  

If the TLISTEN macro instruction completes abnormally, no information is 
returned, and the connect indication (if any) remains available. The state of the 
endpoint is unchanged. The general return code in register 15, and recovery 
action code in register zero, indicate the nature of the failure. The TPL return 
code field may also contain a specific error code that identifies a particular error. 

Return Codes 

The following table lists the symbolic names for the TLISTEN return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY  TCTRUNC 

TRFAILED TAEXCPTN TENOBLOK 

 TAINTEG TEPROTO      TEOVRFLO TERETRCT 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN 
TESTOP  TETERM TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  TEBDADDR 

 TAPROCED TEAMODE  TESTATE TEINCMPL 

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

1–122     Assembler API Programmer Reference 



TLISTEN 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address 
space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

Usage Information 

The TLISTEN macro instruction is used to listen for connect indications that are 
generated at an endpoint. A connect indication is generated when a connection 
request arrives from a remote transport user requesting a connection to the local 
endpoint. The indication remains pending until accepted or rejected by the 
application program, or retracted by the remote transport user. 

The TLISTEN macro instruction completes when a connect indication is 
available. A sequence number is returned in the TPLSEQNO field of the TPL 
associated with the request to uniquely identify the pending indication. This 
sequence number must be provided with subsequent macro instructions that 
accept (TACCEPT) or reject (TREJECT) the connection request. The application 
program should make no assumptions regarding the format of the sequence 
number other than it is an unsigned fullword value. In particular, sequential 
completions of TLISTEN requests do not necessarily generate sequential 
sequence numbers. In addition, the sequence number is not necessarily a small 
integer value suitable for array indexing.  

A count of the number of unreceived connect indications is returned in the 
TPLCOUNT field of the TPL. If the value returned is nonzero, another TLISTEN 
macro instruction should be issued to receive the next connect indication. The 
API guarantees that a TLISTEN request is completed immediately if the 
preceding TLISTEN completed with a nonzero indication count. TOMORE is 
also set in TPLOPCD2 to indicate more connect indications are available. 
TOMORE corresponds to the option code that is set when OPTCD=MORE is 
indicated. 

The protocol address of the calling transport user is also returned to the 
application program. The application program can use the protocol address to 
determine if it should accept or reject the connection request. 

Assembler Language Macro Instructions    1–123 



TLISTEN 

The TLISTEN macro instruction is typically used by application programs 
running in server mode. The protocol address bound to the endpoint is well 
known by transport users that want to connect to the application program and 
use its services. Connect indications generated by arriving connection requests 
are queued, and are presented to the application program as TLISTEN macro 
instructions are issued. The total number of connect indications that can be 
queued at one time is determined by the TBIND macro instruction.  

The TLISTEN macro instruction does not remove a connect indication from the 
queue, but only serves to retrieve the information associated with the indication. 
When a connect indication is received by the application program, it is said to be 
pending. A TACCEPT or TREJECT macro instruction must be issued to remove 
the pending indication from the queue. More than one connect indication can be 
received with TLISTEN macro instructions before any are accepted or rejected, 
and pending indications can be accepted or rejected in any order.  

The number of transport users that can be connected at one time is controlled by 
the number of endpoints the application program is able to create. However, the 
number of connection requests that can be awaiting acceptance is controlled by 
the maximum length of the connect indication queue that was specified when the 
endpoint was enabled. If this length is zero, the endpoint is disabled, and cannot 
queue any connect indications. An error is generated if a TLISTEN macro 
instruction is issued at an endpoint that is disabled. 

If OPTCD=BLOCK is indicated when the TLISTEN macro instruction is issued, 
the request is not completed until a connect indication is available. If the 
application needs to use the endpoint for some other purpose, an outstanding 
TLISTEN request must be retracted. The TRETRACT macro instruction causes a 
pending TLISTEN to complete immediately with a return code indicating the 
retraction.  

The TLISTEN macro instruction is normally issued at endpoints operating in 
connection mode. However, if an endpoint operating in connectionless mode 
was enabled for (simulated) connect indications (see TBIND), the TLISTEN 
macro instruction should be used to receive connect indications generated by 
arriving datagrams. A subsequent TACCEPT macro instruction creates an 
association with the remote transport user. See TCPaccess Assembler API Concepts 
for a discussion of associations in connectionless mode.  

1–124     Assembler API Programmer Reference 



TOPEN 

TOPEN 
Open a Transport Endpoint—The TOPEN macro instruction is used to create an 
endpoint within a given communications domain, and to designate the type of 
transport service required for the endpoint. Optionally, the TOPEN macro 
instruction can be used to acquire control of an existing endpoint from another 
endpoint ID created by another task or in another address space. 
[ symbol ] TOPEN [ DOMAIN = INET ] 
                 [ ,TYPE = ( mode [ ,options ] ) ] 
                 [ ,PROTO = protocol_number ] 
                 [ ,SVCID = transport_service_id ]  
                 [ ,APCB = application_program_control_block_addr ]  
                 [ ,EXLST = exit_list_address ] 
                 [ ,EVENTLST = event_list_address ] 
                 [ ,UCNTX = one_word_of_user_context ] 
                 [ ,EP = old_endpoint_id ] 
                 [ ,TCB = task_control_block_address ] 
                 [ ,ASCB = address_space_control_block_address ] 
                 [ ,USER = endpoint_userid ] 
                 [ ,MODE = TLI | SOCKETS ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TUB | ACEE ] 
                              [ ,PLAIN | CIPHER ] 
                              [ ,NEW | OLD ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E , [ tspl_address ] ) ] 

 DOMAIN=INET Communications domain within which the new endpoint exists.  

Once a domain is selected and the endpoint created, the domain to which 
it belongs cannot be changed for the life of the endpoint. If a domain is 
not specified, one is selected based on the specification of other 
parameters and installation defaults.  

Definition of a domain is independent of the existence of a transport 
provider on the local system that supports the domain. If a domain is 
selected for which no transport provider exists, the endpoint is not 
created. In the current implementation, only a transport provider for 
DOMAIN=INET is supported 

Default: INET. 

Assembler Language Macro Instructions    1–125 



TOPEN 

TYPE = ( mode [ ,options ] )  Type of transport service required for the endpoint. The service type in 
combination with the domain specification is generally sufficient to 
determine the protocol and transport provider used to provide the 
service.  

If the transport service type is not specified, one is selected based on the 
specification of other parameters and installation defaults.  

The service type is fixed for the life of the endpoint. The service type is a 
sublist consisting of the mode of service, followed by optional services 
required by the endpoint.  

The mode of service must be one of these, and must be coded as the first 
sublist operand:  

COTS Connection-mode transport service. 

CLTS Connectionless-mode transport service. 

PROTO=protocol_number Two optional services are defined, and can be requested by specifying one
of these keywords:  

ORDREL  Orderly release required. ORDREL should be requested only 
with the COTS service mode. 

ASSOC  Connectionless associations required. 

Note: ASSOC should be requested only with the CLTS service mode.  

Since the association service is supported entirely within the transport 
service interface, orderly release is always available when connectionless-
mode associations are used.  

These combinations are valid types of service:  

COTS  (COTS,ORDREL)  

CLTS  (CLTS,ASSOC)  

Domains do not necessarily support all transport service types, and for 
any given service type that is supported by a particular domain, a 
transport provider may not be available on the local system. If no 
transport provider exists for the specified service type, the endpoint is not 
created. 

1–126     Assembler API Programmer Reference 



TOPEN 

 This operand is mutually exclusive with the PROTO operand.  

Default: Not indicated (use installation default).  

PROTO = protocol_number  Protocol number of the transport protocol within a communication 
domain that is required for the endpoint. 

The protocol number in combination with the domain specification is 
generally sufficient to determine the protocol and transport provider that 
are used to provide the service. If the protocol number is not specified, 
one is selected based on the specification of other parameters and 
installation defaults. The protocol number is fixed for the life of the 
endpoint.  

Generally, the transport service type should be used to designate the 
required protocol service. However, if more than one candidate protocol 
exits for a given service type, the specific choice can be indicated with the 
protocol number. Also, some installations may be able to run production 
and development versions of the same protocol service, and in this case, a 
protocol number must be specified to force selection of the development 
version.  

The protocol number is domain-dependent, and identifies a specific 
protocol.  

This operand is mutually exclusive with the TYPE operand.  

Default: Not indicated (use installation default).  

SVCID = transport_service_id  ID of a specific transport service provider. Generally, the transport service
type or protocol number is sufficient for selecting the appropriate 
transport service provider. However, if more than one transport service 
provider is available that can provide the requested service, the transport 
service ID must be indicated to select the appropriate provider. The 
transport service ID is coded as an alphanumeric string up to eight 
characters in length.  

Default: Not indicated (use installation default).  

Assembler Language Macro Instructions    1–127 



TOPEN 

APCB = 
application_program_control_block
_address  

Address of the APCB that defines the application program and 
corresponding transport user.  

The APCB also defines the MVS subsystem that contains the transport 
provider. The APCB must be opened by the same task that issued the 
TOPEN macro instruction. If the APCB is not opened, unpredictable 
results may occur.  

Default: Zero (no APCB address).  

EXLST = exit_list_address  Links the endpoint with an exit list containing addresses of routines to 
enter when certain protocol events occur.  

This list is created by a TEXLST macro instruction. More than one 
endpoint can be linked to the same exit list.  

If no exit list is provided, the application program is not able to receive 
immediate notification of asynchronous protocol events. However, 
notification may still be received synchronously with the completion 
status that is returned to the application program when a macro 
instruction completes.  

The TPEND asynchronous exit, and the SYNAD and LERAD 
synchronous exits, are specified in the AOPEN exit list, and cannot be 
defined in the TOPEN exit list. For more information on exit lists, see the 
TEXLST macro and TCPaccess Assembler API Concepts, which discusses 
synchronization and exit routines.  

Note: This operand is mutually exclusive with the following EVENTLST 
operand.  

Default: Zero (no exit list).  

EVENTLST = event_list_address A list of ECBs and exits to use for protocol or shutdown event 
notification. The function of the event list is identical to the function of the 
exit list (EXLST parameter), except that an event list supports event 
notification via ECB posting as well as exit routine execution. The event 
list is created using the TEVNTLST macro instruction. 

Note: This operand is mutually exclusive with the previous EXLST 
operand.  

Default: Zero (no event list). 

1–128     Assembler API Programmer Reference 



TOPEN 

UCNTX = 
one_word_of_user_context  

One arbitrary word of user context to associate with the endpoint.  

The information provided is not interpreted by the API, and is merely 
saved with other endpoint information. It can be retrieved later by the 
application program, and is useful for getting context within exit routines.
This word of context is included in the parameter list passed to any 
asynchronous exit routine that is entered on behalf of the endpoint.  

Default: Zero (no user context). 

EP = old_endpoint_id  Endpoint being acquired when OPTCD=OLD is specified.  

The value specified must be the endpoint ID of an existing endpoint as 
returned from a TOPEN macro instruction issued by the controlling task 
or address space. The task relinquishing control of the endpoint must also 
issue a TCLOSE OPTCD=PASS macro instruction specifying the same 
endpoint ID.  

Default: Zero (create new endpoint). 

TCB = task_control_block_address  TCB address of the task from which an endpoint is being acquired when 
OPTCD=OLD is specified.  

If the indicated value is zero, the endpoint is acquired from another task 
in the specified address space that indicates this task’s TCB address on a 
TCLOSE TCB parameter. 

If the indicated value is not zero, the value specified must match the TCB 
address of the task relinquishing control of the endpoint. 

Default: Zero (accept from any task).  

ASCB = 
address_space_control_block_addre
ss  

ASCB address of the address space from which an endpoint is being 
acquired when OPTCD=OLD is specified.  

If the indicated value is zero, the endpoint can only be acquired from a 
task executing within the same address space. 

If the indicated value is not zero, the indicated value is the ASCB address 
of another address space that currently controls the endpoint 

The relinquishing address space must issue a TCLOSE macro instruction 
indicating this address space as the acquirer.  

Default: Zero (accept from task within this address space only). 

Assembler Language Macro Instructions    1–129 



TOPEN 

USER = endpoint_userid  Associates a user ID with the endpoint for authorization and accounting 
purposes.  

OPTCD=TUB the specified value must be the address of a Transport 
Endpoint User Block (TUB) containing the user information. 

OPTCD=ACEE the specified value must be the address of an Accessor 
Environment Element (ACEE) obtained from the local security system 
when the user ID was authenticated. 

If the option is not coded, the application name specified in the APCB is 
used. 

The password contained in the TUB can be plain text or cipher text 
depending on the OPTCD=PLAIN|CIPHER operand. 

If cipher text, it is assumed that the password was encrypted using the 
encryption mechanism supplied by the local security system. The API 
merely provides the password to the security system in its encrypted 
form. 

The user ID or application name is also supplied to the transport 
provider. How this information is used is unspecified, and provider-
dependent.  

Default: Zero (no user ID; use application name for accounting and 
authorization).  

MODE = TLI | SOCKETS Allows TSEND and TSENDTO operate in a mode similar to BSD sockets  

If the option is MODE=SOCKETS, then data transfer occurs in socket 
mode. 

See Usage Notes for TSEND and TSENDTO for additional information on 
data transfer modes. 

Default: TLI. 

1–130     Assembler API Programmer Reference 



TOPEN 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-lengthTPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = TUB | ACEE  Format of user ID information referenced by the USER operand.  

OPTCD=TUB, then user ID, group, and password information are 
provided in a Transport User Block (TUB). 

OPTCD=ACEE, the user information is contained in an Accessor 
Environment Element (ACEE) obtained from the local security system. 

Default: TUB (user information provided in TUB). 

OPTCD = PLAIN | CIPHER  Indicates whether the password contained in the Transport User Block 
(TUB) designated with the USER operand is encrypted or in plain text 
form. 

OPTCD=PLAIN the password is in plain text. 

OPTCD=CIPHER the password is encrypted. 

The API uses this information when requesting user ID and password 
verification from the local security system.  

Default: PLAIN (password in plain text). 

Assembler Language Macro Instructions    1–131 



TOPEN 

OPTCD = NEW | OLD  Indicates whether a new endpoint should be created, or an existing 
endpoint should be passed to another task or address space.  

OPTCD=NEW a new endpoint is to be created, and the EP operand must 
indicate a zero value. 

OPTCD=OLD control of an existing endpoint is being acquired from 
another task or address space. The EP operand indicates the ID of an 
existing endpoint. 

Default: NEW (create new endpoint). 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TOPEN macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword boundary. 
If ECB=INTERNAL is coded, the TPL field normally used to store the 
ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TOPEN macro 
instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

1–132     Assembler API Programmer Reference 



TOPEN 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TOPEN macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to
use for this request. If no MF operand is specified, the standard form is 
used.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TOPEN macro instruction completes normally when the requested endpoint 
is created (or acquired), and is ready to be used as the argument of other API 
macro instructions. The initial state of the endpoint is opened (TSOPENED) if the 
endpoint is new. If the endpoint is old, and was acquired from another task or 
address space, the endpoint retains the state that existed when it was closed by 
the relinquishing task. In this case, the state can be opened (TSOPENED), 
disabled (TSDSABLD), enabled (TSENABLD), or connected (TSCONNCT).  

A token that identifies the endpoint is returned in the TPL as the endpoint ID, 
and should be used in all subsequent requests that refer to this endpoint. The 
application program should make no assumptions regarding the format of an 
endpoint ID, other than it is an unsigned, fullword value. If an existing endpoint 
was acquired from another task, the TCB and ASCB addresses of the 
relinquishing task are returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

If the TOPEN function completes abnormally, the endpoint is not created (or 
acquired), and no endpoint ID is returned. The general return code in register 15, 
and recovery action code in register zero, indicate the nature of the failure. The 
TPL return code field may contain a specific error code that identifies a particular 
error.  

Assembler Language Macro Instructions    1–133 



TOPEN 

Return Codes 

The following table lists the symbolic names for the TOPEN return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General Return 
Code 
(Register 15) 

Recovery 
Action 
Code 
(Register 0) 

Conditional or Specific Error Code/Explanation  

TROKAY TAOKAY TCOKAY 

TRFAILED TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TESTOP TETERM TEUNAVBL 
TEUNSUPF TEUNAUTH TERSOURC 

 TAFORMAT TEBDFNCD TEBDDOM TEBDXLST 
TEBDEXIT TEBDEPID TEBDTSID 
TEBDPROT  TEBDACEE TEBADDR 
TEBDUSER TEBDDECB TEBDASCB 
TEBDOPCD TEBDTYPE TEBDXECB 

 TAPROCED TEAMODE  TEOWNER 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due 
to corrupted data areas maintained within the 
application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, 
or is in the process of closing.  

1–134     Assembler API Programmer Reference 



TOPEN 

Usage Information 

The TOPEN macro instruction is used to create a new transport endpoint, or 
acquire control of an existing endpoint from some other task or address space. 
An endpoint ID is returned. It is used to identify the newly created (or acquired) 
endpoint, and must be supplied in all subsequent transport service requests that 
apply to the endpoint. The endpoint remains opened until closed with a TCLOSE 
macro instruction.  

The endpoint carries with it some context that is fixed for the duration of its use. 
It belongs to a particular communications domain, and is associated with a 
particular transport provider active on the local system. The transport provider is 
the supplier of a transport service using a particular transport protocol with well 
known characteristics. The domain, transport service and protocol are selected in 
accordance with the DOMAIN, TYPE, and PROTO operands specified on the 
TOPEN macro instruction. A service ID can also be specified that selects a 
particular provider when more than one apply. 

The endpoint is linked to the application program via the APCB address that is 
specified when the endpoint is opened. The APCB also serves to identify the 
MVS subsystem that contains the transport provider. Once the endpoint is 
opened, the endpoint ID serves as the anchor for all context related to the 
endpoint. The APCB must have been opened by the same task that opens the 
endpoint.  

The endpoint can also be associated with a user that is known to the local 
security system. The user is identified with a Transport User Block (TUB), or if 
the user ID has already been authenticated by the application program, the 
address of an ACEE can be supplied. This information is used to determine 
access authority for the requested service, and is used in subsequent requests to 
determine access authority for certain resources such as well-known protocol 
addresses. Any accounting information maintained by the API or the transport 
provider also contains the user ID.  

Throughout the life of the endpoint, several asynchronous protocol events can 
occur. For example, an endpoint used to listen for connection requests can 
receive a connect indication, or an endpoint associated with an established 
connection can suddenly become disconnected. An exit list, generated by the 
TEXLST or TEVNTLST macro instruction, is used to designate exit routines for 
handling asynchronous events. The address of the exit list is specified by the 
EXLST or EVENTLST operand. 

The exit list is linked to the endpoint at the time it is created, and if no exit list is 
specified, the exit list linked to the APCB is used in its place. If no exit list exists, 
or a particular protocol exit has not been enabled, the corresponding event must 
be processed synchronously.  

Assembler Language Macro Instructions    1–135 



TOPTION 

An endpoint can only be closed by the task that opened it. The opening task is 
said to control (or own) the endpoint, although other tasks may issue macro 
instructions that reference the endpoint. If it is necessary for another task to close 
an endpoint, control must be acquired by the closing task. The current owner 
passes control by closing the endpoint with OPTCD=PASS indicated. The new 
owner acquires control by opening the endpoint with OPTCD=OLD indicated. 
Ownership can be passed to a task in another address space. The task and 
address space are identified by the TCB and ASCB operands.  

When control of an endpoint is passed to another address space, local endpoint 
context must be recreated in the new address space. In addition, since local 
storage used to maintain the context is associated with the task that allocates it, 
this context must be recreated, even when passing control to another task within 
the same address space. Therefore, even though a passed endpoint retains most 
of its existing context, a new endpoint ID is assigned. The application program 
must use the endpoint ID returned by TOPEN in all future service requests, and 
the old endpoint ID should be discarded. Neither the acquiring or relinquishing 
tasks should ever reference the old endpoint ID once the TOPEN and TCLOSE 
macro instructions have completed. 

TOPTION 
Manage Options for Transport Endpoint—Protocol options associated with an 
endpoint are managed using the TOPTION macro instruction. Options can be 
declared, queried or verified, and default options used by the transport provider 
can be retrieved.  
[ symbol ] TOPTION [ EP = endpoint_id ] 
                   [ ,OPLEN = protocol_options_length ] 
                   [ ,OPBUF = protocol_options_address ] 
                   [ ,OPALET = protocol_options_alet ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] 
                                [ ,NEGOT | NONEGOT ] 
                                [ ,DECLARE | VERIFY | QUERY | DEFAULT ] 
                                [ ,TP | API ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

1–136     Assembler API Programmer Reference 



TOPTION 

EP = endpoint_id  Endpoint at which the TOPTION macro instruction will execute.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

OPLEN = protocol_options_length Length (in bytes) of the protocol option list identified by the OPBUF 
operand.  

A value of zero indicates there is no protocol option list, and is invalid 
for the TOPTION macro instruction.  

Default: Zero (no protocol option list).  

OPBUF = 
protocol_options_address  

Address of a storage area containing a protocol option list.  

The area must contain a list of variable-length protocol options, with 
each option identified by its length and name. Each entry in the list must 
also contain room for an option value, which is initialized with the 
desired value of the option for the DECLARE and VERIFY forms of the 
TOPTION macro instruction. For the DEFAULT and QUERY forms, the 
option value is returned in the storage area provided.  

The type, number and format of protocol options are provider-
dependent, and the maximum size of the option list can be determined 
by issuing a TINFO macro instruction. The storage area can be aligned 
on any boundary convenient to the application program.  

Default: Zero (no protocol option list).  

OPALET = protocol_options_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the OPBUF parameter.  

The OPALET value must be an ALET contained in the Dispatchable Unit
Access List (DUAL) of the caller. The OPALET parameter can be used 
only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

Assembler Language Macro Instructions    1–137 



TOPTION 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TOPTION macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control 
is not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TOPTION request. The 
application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode). 

OPTCD = NEGOT | 
NONEGOT  

Indicates whether protocol options associated with this request can be 
negotiated to an inferior value.  

OPTCD=NEGOT protocol options are negotiated to comply with the 
limits of the transport provider, and the conditional completion code is 
set to indicate that the negotiation occurred. 

OPTCD=NONEGOT negotiation is disallowed, and unacceptable 
options result in the abnormal completion of the TOPTION macro 
instruction. 

Default: NONEGOT (negotiation disallowed).  

1–138     Assembler API Programmer Reference 



TOPTION 

OPTCD = DECLARE | VERIFY 
| QUERY | DEFAULT  

The action to be performed by the TOPTION macro instruction. Protocol 
options that are the subject of the actions listed in this table are 
contained or returned in an option list designated by the OPLEN and 
OPBUF operands.  

One of these actions may be indicated:  

OPTCD=DECLARE the options specified by the application program 
are invoked, and the option list is updated with the inferior value of any 
negotiated options.  

OPTCD=VERIFY the options specified by the application program are 
verified, and the option list is updated with the inferior value of any 
negotiated options.  

OPTCD=QUERY the current value of options selected by the application 
program are returned. 

OPTCD=DEFAULT the default value of options selected by the 
application program are returned.  

The type, number and format of protocol options supported by a 
transport provider are protocol specific. 

Default: DECLARE (invoke protocol options). 

OPTCD = TP | API  Indicates whether the option list identified by the OPBUF and OPLEN 
operands contains transport interface or transport provider options. 

OPTCD=API the option list contains interface options that are processed 
solely by the API.  

OPTCD=TP the option list is passed to the transport provider for 
processing. 

Transport interface and transport provider options can only be 
manipulated with separate invocations of the TOPTION macro 
instruction.  

Default: TP (transport provider options).  

Assembler Language Macro Instructions    1–139 



TOPTION 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TOPTION macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field used to store the 
ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TOPTION macro 
instruction associated with this TPL is completed.  

The TPL exit routine is scheduled only if asynchronous was specified. In 
synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TOPTION macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

1–140     Assembler API Programmer Reference 



TOPTION 

Completion Information 

The TOPTION macro instruction completes normally (or conditionally) when the 
protocol options specified by the application program have been processed by 
the transport provider. If OPTCD=DECLARE was specified, the indicated 
options have been negotiated and set to the requested values. Negotiated, 
verified, or queried values of the indicated options are returned in the storage 
area provided by the application program. The state of the endpoint is not 
changed.  

On return to the application program, the general return code in register 15 is set 
to zero (TROKAY), and a conditional completion code is returned in register 
zero. TCNEGOT is set in the conditional completion code if any of the protocol 
options specified by the application program were negotiated to an inferior 
value, and OPTCD=DECLARE was indicated. TCVERIFY is set if any of the 
options specified by the application program are not supported by the transport 
provider, and OPTCD=VERIFY was indicated. The TPL return code field is set 
accordingly. No other information is returned.  

If the TOPTION macro instruction completes abnormally, no protocol options 
are negotiated, set, or returned. All options in effect at the time the TOPTION 
macro instruction was executed remain in effect. The state of the endpoint is 
unchanged. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field may 
also contain a specific error code that identifies a particular error.  

Assembler Language Macro Instructions    1–141 



TOPTION 

Return Codes 

The following table lists the symbolic names for the TOPTION return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 

  

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/ 
Explanation  

TROKAY TAOKAY TCNEGOT  TCVERIFY 

TRFAILED TAEXCPTN TENONEGO 

 TAENVIRO TESYSERR TESUBSYS TEDRAIN  
TESTOP  TETERM TEUNSUPO 
TEUNAUTH  TERSOURC 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  TEBDOPTN 

 TAPROCED TEAMODE  TESTATE TEINCMPL 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely 
due to corrupted data areas maintained within 
the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

1–142     Assembler API Programmer Reference 



TOPTION 

Usage Information 

The TOPTION macro instruction is used to manage protocol options associated 
with an endpoint. Protocol options can be specified by the application program, 
and options the application program intends to specify can first be verified to 
determine if they are supported by the transport provider. Default options that 
are in effect if not overridden by the application program can be retrieved, and 
the current value of options in effect for the endpoint can be queried. The action 
to be taken by the TOPTION macro instruction is indicated by the OPTCD 
operand.  

Multiple options can be manipulated with a single invocation of the TOPTION 
macro instruction. The options are identified by an option list provided by the 
application program, and updated by the transport provider. Each entry in the 
list represents one option, and contains the length and name of the option. The 
format of the option name is provider-dependent, but usually identifies a 
protocol level and option supported by the protocol. Each entry also contains 
room for an option value, whose length is option-dependent. The format of an 
option list entry for a specific transport provider is defined by the TPO DSECT 
(see TDSECT ).  

The following table shows the general format: 

TOPTION Format of Option Name 
 

x+0  OPTION LENGTH  OPTION NAME 

x+4  OPTION VALUE 

x+optlen   

The type, number, and format of protocol options supported by the transport 
provider is protocol and provider dependent. The application should be 
conservative in its use of protocol options to remain independent of a specific 
transport provider. The options supported by specific transport providers, and 
the format of their specification, are documented in the provider-specific 
appendix at the end of this reference.  

Assembler Language Macro Instructions    1–143 



TOPTION 

Although a transport provider supports a particular option, there is no guarantee 
it can support the value requested at the time of the request. If necessary, the 
transport provider negotiates the option to an inferior value in order to 
successfully complete the macro instruction. 

■  If OPTCD=NONEGOT is specified, no negotiation is allowed, and the macro 
instruction is completed abnormally. 

■  If OPTCD=NONEGOT is not specified, the macro instruction is completed 
conditionally, and the fact that an option was negotiated is indicated by the 
conditional completion code. The option list is updated with the negotiated 
option value. 

Transport Provider Options 

The TOPTION macro instruction is generally used to manipulate transport 
provider options. However, if so indicated by the OPTCD operand, the 
TOPTION macro instruction can also be used to manipulate transport interface 
options. Transport interface (OPTCD=API) and transport provider (OPTCD=TP) 
options cannot be combined in the same options list. The API option names are 
defined by the TPO DSECT. These names correspond to the symbols used in the 
DSECT to define the option name.  

These names describe OPTCD=API options. The values are all four bytes long so 
the option length must be eight bytes. 
 

TPOAQSND The maximum number of TSEND or TSENDTO macro instructions that can be 
executed at an endpoint without waiting for at least one to complete. In other 
words, TPOAQSND is the maximum number of pending send requests.  

TPOAQRCV The maximum number of TRECV or TRECVFR macro instructions that can be 
executed at an endpoint without waiting for at least one to complete. In other 
words, TPOAQRCV is the maximum number of pending receive requests.  

TPOALSND The maximum number of bytes of data that can be pending for outstanding 
TSEND or TSENDTO requests. In other words, TPOALSND is the total amount 
of send buffering allocated for an endpoint.  

TPOALRCV The maximum number of bytes of data that can be pending for outstanding 
TRECV or TRECVFR requests. In other words, TPOALRCV is the total amount 
of receive buffering allocated for an endpoint. 

1–144     Assembler API Programmer Reference 



TOPTION 

TCP Provider Session Options 

These options are valid only for TCP provider sessions. These names describe 
OPTCD=TP options. The values are all four bytes long, so the option length must 
be eight. 
 

TPOPRWND The size of the receive buffer used by TCP. This is reflected as the receive 
window advertised by TCP. This option is valid only for TCP sessions and must
be set before a connection is established. The range of acceptable values is 256-
500,000.  

Values above 65535 are valid and allocate a buffer of the specified size. A 
sliding window of 65535 is used in this buffer by TCP. 

Default: 261376. 

TPOPKTIM The interval of idle time used by the keepalive option specified in minutes. The 
range of acceptable values is 1-1439.  

Default: 120. 

TPOPKEEP The keepalive option enables the periodic probing of the remote. This option 
specifies the type of keepalive to use. It is also used to turn off the keepalive 
option. These integer values are supported: 

0  Turn off keepalive.  

1 Use keepalive with no data, and do not abort the session if no response. 

2 Use keepalive with no data, and abort the session if no response. 

3  Use keepalive with data. 

See the notes following this table for a discussion of keepalive. Their use is 
discouraged and is provided only for those applications that are incapable of 
detecting idle sessions. 

TPOPDNAG Defeat TCP’s Nagle algorithm used to gather send data into maximal packets. A
value of one defeats the Nagle algorithm.  

A value of zero restores normal operation of the Nagle algorithm. This option is 
only valid when a connection is established. It is intended for use by 
applications that send small amounts of data and for performance reasons 
demand that they be sent in small packets.  

High volume applications should not use this option and should use multiple 
asynchronous TSENDs instead. 

Assembler Language Macro Instructions    1–145 



TOPTION 

Note: These notes apply to the keepalive option (that is, TPOPKEEP): 

The use of keepalive is discouraged by the internet community. It should be the 
responsibility of the application to detect idle connections and probe them or 
terminate them as appropriate. However, here is a brief description of their use: 

■  The keepalive options may only be set when a connection is established. 
Once set, they do not become effective until there is network activity, either a 
TSEND or a TRECV. This also applies to turning keepalive off.  

■  Keepalive packets may be sent with or without data. Normally they are sent 
without data. Since some implementations do not respond to keepalive of 
this form, excessive retransmissions of the keepalive does not abort the 
session. However, if the session has terminated at the remote end, that host 
sends a reset, aborting the connection. If the host does not respond at all, you 
can request that the session be aborted after excessive retransmissions. 

■  If it is determined that the remote host implementation does not respond to a 
keepalive with no data, you can request that keepalive be sent with one byte 
of data. The retransmission mechanism aborts the session if retransmissions 
are exceeded.  

See RFC 1122 for a more complete description of keepalive considerations.  

1–146     Assembler API Programmer Reference 



TOPTION 

TCP/UDP/RAW Provider Session Options 

These options are derived from the Berkeley socket implementation and are valid 
for TCP, UDP or RAW sessions. These options are used with OPTCD=TP 
options. 

 

TPOIPOPT Set or get options for IP protocol 

The maximum total length of IP options is 40 bytes. 

Most IP protocol options are itemized in standard IP header format starting with: 

■  Option Code: 1 byte 

■  Length of segment: 1 byte 

■  Pointer to first variable data field: 1 byte 

■  Variable length data fields 

 Supported options are: 

0     End-of-options (This option is a single byte and does not use the standard IP option 
format.) 

 1     No-op (This option is a single byte and does not use the standard IP option format.) 

 7     Record Route Option 

4-byte
IP

Address1

Pointer

4

Length

7-39

Code

7
.....

4-byte
IP

Address9
 

Assembler Language Macro Instructions    1–147 



TOPTION 

 68 Timestamp Option 

The Timestamp Option uses two different formats depending on the operation 
requested within the Timestamp Option Flags field. 

4-byte
Timestamp

#1

Pointer

5

Length

8-40

Code

68
.....

O
verflow

Flags

4-byte
Timestamp

#9

4-byte
Timestamp

#1

Pointer

5

Length

12-36

Code

68
.....

O
verflow

Flags

4-byte
Timestamp

#4

4-byte
IP

Address1

4-byte
IP

Address4

  Note: Overflow and Flags fields are four bits each. 

 Overflow: count of additional hops not timestamped 

Flags:  

0 = Record timestamps only 

1 = Record IP address/timestamp pairs 

2 = Record timestamps for pre-set IP addresses 

 131  Loose Source and Record Route Option 

4-byte
IP Destination

Address

Pointer

4

Length

11-43

Code

131
.....

4-byte
IP

Address9

4-byte
IP

Address1

 

Route through the specified addresses; additional hops may be taken. The last address 
in the list must be the final destination. 

 

 137 Strict Source and Record Route Option 

4-byte
IP Destination

Address

Pointer

4

Length

11-43

Code

137
.....

4-byte
IP

Address9

4-byte
IP

Address1
 

Route only through each address as specified. The last address in the list must be the 
final destination. 

1–148     Assembler API Programmer Reference 



TOPTION 

TPOSIOAR Add a single routing table entry. This socket option is for internal use only.  

The option is failed when requested from outside the transport provider address space. 
This option requires an 88-byte field to specify the route data. The route data is mapped 
by T01DIRT (internal DSECT macro). 

TPOSIODR Delete a single routing table entry. This socket option is for internal use only. 

The option is failed when requested from outside the transport provider address space. 
This option requires an 88-byte field to specify the route data. The route data is mapped 
by T01DIRT (internal DSECT macro). 

TPOIFNO Get the number of interfaces. Provide a four-byte buffer for return of the count. 

TPOSIFCF Get the interface configuration list. The list is returned in a buffer which is sized by 
(number of interfaces * 32) + 4, where the first four bytes contain the length of the 
configuration list. Fields returned for each interface are: 

 Offset    Length    Description 

   0          16             Name of the interface 
 16          16             Interface network address 

The first eight bytes of the interface network address can be mapped using the 
Transport Protocol Address (TPA) DSECT. The last eight bytes are padding. 

TPOSIFLG Get interface flags. Provide an 18-byte buffer with the interface name specified in the 
first 16 bytes. Associated flags are returned in bytes 17-18.  

See data structure TIOC for flag definitions. 

TPOSIFMT Get maximum transmission unit. Provide a 20-byte buffer with the interface name 
specified in the first 16 bytes. The associated MTU is returned in bytes 17-20. 

TPOSIFME Get metric. Provide a 20-byte buffer with the interface name specified in the first 16 
bytes. The associated metric is returned in bytes 17-20. 

TPOSIFNM Get network address mask. Provide a 32-byte buffer with the interface name specified 
in the first 16 bytes. The associated network mask is returned in bytes 17-24.  

This information can be mapped using the Transport Protocol Address (TPA) DSECT 
(for example, the address mask is at offset +4 within this structure).  

Bytes 25-32 are padding. 

Assembler Language Macro Instructions    1–149 



TOPTION 

TPOSIFBA Get the broadcast address. Provide a 32-byte buffer with the interface name specified in 
the first 16 bytes. The associated address is returned in bytes 17-24.  

This information can be mapped using the Transport Protocol Address (TPA) DSECT 
(for example, the broadcast address is at offset +4 within this structure).  

Bytes 25-32 are padding. 

TPOSIFAD Get the interface address. Provide a 32-byte buffer with the interface name specified in 
the first 16 bytes. The associated address is returned in bytes 17-24.  

This information can be mapped using the Transport Protocol Address (TPA) DSECT 
(for example, the interface address is at offset +4 within this structure). Bytes 25-32 are 
padding. 

TPOSIFEN Get the hardware address. Provide a 32-byte buffer with the interface name specified in 
the first 16 bytes. 

 The associated address is returned beginning at byte 17 and extending for a length that 
is dependent on the link layer addressing that is in use (for example, the length would 
be six in the case of Ethernet). The remainder of the buffer is padding. 

TPOSIFDS Get the destination address. Provide a 32-byte buffer with the interface name specified 
in the first 16 bytes. The associated address is returned in bytes 17-24.  

This information can be mapped using the Transport Protocol Address (TPA) DSECT 
(for example, the destination address is at offset +4 within this structure). Bytes 25-32 
are padding. 

TPOIPTTL Set or get IP time-to-live.  

Provide a four-byte field for the maximum number of routing hops to be taken in a 
range from 1 to 255. 

TPOIPTOS Set or get type of service. Provide a four-byte field for the type of service in a range 
from zero to 255. 

TPOTPMSS Set or get maximum segment size. Provide a four-byte field for the maximum segment 
size in a range from 512 to 64 KB -20.  

The number may reflect the maximum transmission unit size less the size of the IP 
header (20 bytes). 

TPOIPDNR Set or get IP do-not-route. Provide a four-byte field.  

A value of one indicates that data not be sent through any router, and is restricted to 
destinations on the local network. 

1–150     Assembler API Programmer Reference 



TOPTION 

TPOIPBRO Set or get IP broadcast. Provide a four-byte field.  

A value of one indicates that broadcasting is allowed. 

TPOUDSUM Set or get UDP checksums option. Provide a four-byte field.  

A value of one indicates that UDP checksumming is in effect. 

TPOREUSE Set or get reuse address option. Provide a four-byte field.  

A value of one indicates for TBIND to use a server port number even though the port 
number is in use by another server. 

TPOUDATA Set user data. Provide a 24-byte field with character data to be displayed by NETSTAT. 

The 24-byte field breaks down as follows: 

 Bytes         Value 
   0-7            User ID 
   8-15          Secondary Logical Unit (SLU) 
 16-23          Primary Logical Unit (PLU) or service 

Unicenter TCPaccess does not verify the contents of the data, it simply accepts it and 
assumes that the TU invoking TOPTION is correct. 

The TOPTION macro instruction can be issued when the endpoint is in the 
opened (TSOPENED), disabled (TSDSABLD), enabled (TSENABLD), and 
connected (TSCONNCT) states. However, for COTS endpoints, some protocol 
options may not be changed after the endpoint is connected. In the future, some 
protocol options may also be specified with the TCONNECT and TACCEPT 
macro instructions. Similarly, in the future, for CLTS endpoints operating in pure 
datagram mode (that is, without associations), options may be specified with 
each datagram sent. 

Assembler Language Macro Instructions    1–151 



TPL 

TPL 
Create a Transport Service Parameter List—The TPL macro instruction is used 
to create a Transport Service Parameter List (TPL), which is the primary 
argument of all transport service functions.  
 

[ symbol ] TPL [ EP = endpoint_id ]                

[ ,ADLEN = protocol_address_length ] 
               [ ,ADBUF = protocol_address_address ] 
               [ ,ADALET = protocol_address_alet ] 
               [ ,DALEN = user_data_length ] 
               [ ,DABUF = user_data_address ] 
               [ ,DAALET = user_data_alet ] 
               [ ,OPLEN = protocol_options_length ] 
               [ ,OPBUF = protocol_options_address ] 
               [ ,OPALET = protocol_options_alet ] 
               [ ,QLSTN = listen_queue_length ] 
               [ ,NEWEP = new_endpoint_id ] 
               [ ,SEQNO = sequence_number ] 
               [ ,USER = endpoint_userid ] 
               [ ,TCB = task_control_block_address ] 
               [ ,ASCB = address_space_control_blk_addr ] 
               [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                            [ ,SYNC | ASYNC ] 
                            [ ,TRUNC | NOTRUNC ] 
                            [ ,NEGOT | NONEGOT ] 
                            [ ,BLOCK | NOBLOCK ] 
                            [ ,ASSIGN | USE ] 
                            [ ,LOCAL | REMOTE ] 
                            [ ,PRIMARY | SECNDRY | STATS ] 
                            [ ,DECLARE | VERIFY | QUERY | DEFAULT ] 
                            [ ,TP | API ] 
                            [ ,MORE | NOMORE ] 
                           [ ,NORMAL | EXPEDITE ] 
                            [ ,EOM | NOTEOM ] 
                            [ ,DIRECT | INDIR ] 
                            [ ,ABORT | CLEAR ] 
                            [ ,DELETE | PASS ] 
                            [ ,TUB | ACEE ] 
                            [ ,PLAIN | CIPHER ] ) ] 
                            [ ,NOFULL | FULL ] 
                            [ ,NOTIMEOUT | TIMEOUT ]  
                            [ ,MBUF | NOMBUF ] ) ] 
               [ ,FNCCD = TACCEPT | TADDR | TBIND | TCLEAR | 
                          TCLOSE | TCONFIRM | TCONNECT | 
                          TDISCONN | TINFO | TLISTEN | TOPTION | 
                          TRECV | TRECVERR | TRECVFR | 
                          TREJECT | TRELACK | TRELEASE | TRETRACT | 
                          TSEND | TSENDTO | TUNBIND | TUSER ] 
               [ ,ECB = INTERNAL | event_control_block_addr ] 
               [ ,EXIT = tpl_exit_routine_address ] 
               [ ,MF = ( L | M , [ tpl_address ] ) ] 

1–152     Assembler API Programmer Reference 



TPL 

EP = endpoint_id  Endpoint associated with the TPL. When the TPL is later executed using 
a TEXEC or other API macro instruction, the requested function is 
performed on the indicated endpoint. 

The value specified must be a valid endpoint ID returned from a TOPEN 
macro instruction.  

Default: Zero (no endpoint specified). 

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address storage area identified by the 
ADBUF operand.  

If the storage area contains a protocol address to be supplied to the 
transport provider, the length indicated should be the actual length of 
the protocol address.  

If the storage area is to be used by the transport provider for returning a 
protocol address, the length indicated should be the maximum length of 
the storage area. The transport provider updates the ADLEN field in the 
TPL to indicate how many bytes were returned.  

A length of zero can be specified indicating there is no protocol address 
in the storage area, or one is not to be returned by the transport provider, 
depending on the semantics of the request. If the length is nonzero, 
ADBUF must be coded and indicate a valid storage area.  

Default: Zero (no protocol address). 

ADBUF = 
protocol_address_address  

Address of a protocol address storage area whose length is specified by 
the ADLEN operand. 

If the semantics of the request require a protocol address to be supplied 
to the transport provider. the storage area must contain a valid protocol 
address. 

If the semantics of the request require the transport provider to return a 
protocol address, the storage area is updated, and should be large 
enough to contain the protocol address. The maximum size of a protocol 
address may be obtained from the transport provider with the TINFO 
macro instruction.  

An address of zero can be specified indicating there is no protocol 
address to be supplied or returned. However, if the address is zero, the 
length must also be zero.  

Assembler Language Macro Instructions    1–153 



TPL 

 There are no alignment restrictions for this storage area. The length of a 
protocol address storage area is variable to accommodate a variety of 
transport providers, or to accommodate transport protocols that use 
variable length protocol addresses. The structure and content of a 
protocol address is provider-dependent. Information for specific 
transport providers can be found in the appropriate appendix at the end 
of this manual.  

Default: Zero (no protocol address storage area). 

ADALET = protocol_address_alet Access List Entry Token (ALET) that is used in access register (AR) mode 
when referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The ADALET 
parameter may be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

DALEN = user_data_length  Length (in bytes) of the data storage area identified by the DABUF 
operand.  

If the storage area contains data to be supplied to the transport provider 
(for example, a send request), the length indicates that it should be the 
actual length of the data. 

If the storage area is to be used by the transport provider for returning 
data (for example, a receive request), the length indicates that it should 
be the maximum length of the storage area. The transport provider 
updates the DALEN field in the TPL to indicate how many bytes were 
returned. 

A length of zero can be specified indicating there is no data in the storage
area, or none is to be returned by the transport provider, depending on 
the semantics of the request. If the length is nonzero, DABUF must be 
coded and indicate a valid storage area. Specifying a length of zero may 
be invalid for certain types of requests, and if so, generates an error.  

Default: Zero (no user data). 

1–154     Assembler API Programmer Reference 



TPL 

DABUF = user_data_address  Address of a data storage area whose length is specified by the DALEN 
operand. 

If the semantics of the request require data to be supplied to the 
transport provider, the storage area must contain the required user data. 

If the semantics of the request require the transport provider to return 
data, the storage area is updated, and should be large enough to contain 
the desired amount of data.  

An address of zero can be specified indicating there is no data to be 
supplied or returned. However, if the address is zero, the length must 
also be zero. There are no alignment restrictions for this storage area.  

The content of the storage area varies depending on the type of request 
(for example, if the function requested is TCONNECT, the data storage 
area contains connect user data). Similarly, if the function is TDISCONN, 
the data storage area contains disconnect user data. For TRECV and 
TSEND functions, the storage area contains arbitrary application data. A 
given transport provider may not support all data types. The API does 
not interpret the content of any data contained in the storage area.  

Just as the content of the data storage area varies depending on the 
transport function requested, so does the maximum length. The 
maximum size of various data types may be obtained from the transport 
provider with the TINFO macro instruction.  

Default: Zero (no user data storage area)  

DAALET = user_data_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

The DAALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The DAALET 
parameter can be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

Assembler Language Macro Instructions    1–155 



TPL 

OPLEN = protocol_options_length Length (in bytes) of the protocol options storage area identified by the 
OPBUF operand.  

If the storage area contains protocol options to be supplied to the 
transport provider, the length indicates that it should be the actual 
length of the protocol options. 

If the storage area is to be used by the transport provider for returning 
protocol options, the length indicates that it should be the maximum 
length of the storage area. The transport provider updates the OPLEN 
field in the TPL to indicate how many bytes were returned.  

A length of zero can be specified indicating there are no protocol options 
in the storage area, or none are to be returned by the transport provider, 
depending on the semantics of the request. If the length is nonzero, 
OPBUF must be coded, and indicate a valid storage area.  

Default: Zero (no protocol options). 

OPBUF = 
protocol_options_address  

Address of a protocol options storage area whose length is specified by 
the OPLEN operand. 

If the semantics of the request require protocol options to be supplied to 
the transport provider, the storage area must contain valid protocol 
options. 

If the semantics of the request require the transport provider to return 
protocol options, the storage area is updated, and should be large 
enough to contain the protocol options. The maximum size of protocol 
options may be obtained from the transport provider with the TINFO 
macro instruction. 

An address of zero can be specified indicating there are no protocol 
options to be supplied or returned. However, if the address is zero, the 
length must also be zero. There are no alignment restrictions for this 
storage area.  

The length of a protocol options storage area is variable to accommodate 
a variety of transport providers, or to accommodate transport protocols 
that use variety of protocol options. The type, number and format of 
protocol options is provider-dependent. Information for specific 
transport providers can be found in the appropriate appendix at the end 
of this manual.  

Default: Zero (no protocol options storage area). 

1–156     Assembler API Programmer Reference 



TPL 

OPALET = protocol_options_alet Access List Entry Token (ALET) that is used in access register (AR) mode 
when referencing the storage specified by the OPBUF parameter.  

The OPALET value must be an ALET that is contained in the 
Dispatchable Unit Access List (DUAL) of the caller. The OPALET 
parameter may be used only if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

QLSTN = listen_queue_length  Size of the queue for holding incoming connections arriving at an 
endpoint, and pending connect indications received by the application 
program. 

If the value specified is zero, no connections can be queued, and the 
endpoint is disabled for receiving connections. 

If the value specified is nonzero, incoming connections are queued, and 
corresponding connect indications are generated at the endpoint. 

A connect indication remains pending until it is accepted or rejected by 
the application program, or until the connection is abandoned by the 
caller. The value of this operand generally determines whether the 
application program is operating in client or server mode.  

The transport provider may not be able to queue the number of 
connections specified by the application program, and as a result, 
attempts to negotiate the indicated value to a lesser amount. If 
negotiation is permitted by the application program (OPTCD=NEGOT), 
the request completes conditionally, and returns a conditional 
completion code in register zero. Otherwise, the TBIND request 
completes abnormally.  

Default: Zero (endpoint is disabled). 

Assembler Language Macro Instructions    1–157 



TPL 

NEWEP = new_endpoint_id  Endpoint at which a connection is established when a TACCEPT 
function is executed at an endpoint with a pending connect indication.  

The SEQNO operand specifies which connect indication is being 
accepted. The value specified for NEWEP is the endpoint ID returned 
from a TOPEN macro instruction. A value of zero can be used to indicate 
the listening endpoint.  

The connected endpoint may be the endpoint at which the connect 
indication arrived, or a new endpoint. 

If NEWP specifies a new endpoint, the endpoint must be in the disabled 
(TSDSABLD) state. A new endpoint must have a local protocol address 
bound to it before a connect indication can be accepted. The local 
protocol address may be the same as that bound to the listening 
endpoint, or different (if supported by the underlying protocol).  

If NEWP specifies an existing endpoint, NEWP is the endpoint ID of the 
listening endpoint (or zero). The endpoint must not have any pending 
connect indications other than the one being accepted (that is, the 
endpoint must be in the connect-indicating-pending state (TSINCONN), 
and the number of queued indications must be one). 

Default: Zero (connection established at listening endpoint).  

SEQNO = sequence_number  Used by the TACCEPT or TREJECT macro instructions to specify which 
of several potential pending connect indications is to be accepted or 
rejected.  

The specified value is the sequence_number that was returned by the 
transport provider with the completion of a TLISTEN macro instruction, 
previously executed at the same endpoint.  

Default: Zero (most likely an invalid sequence number). 

1–158     Assembler API Programmer Reference 



TPL 

USER = endpoint_userid  Associates a user ID with the endpoint for authorization and accounting 
purposes.  

OPTCD=TUB the specified value must be the address of a Transport 
Endpoint User Block (TUB) containing the user information. 

OPTCD=ACEE the specified value must be the address of an Accessor 
Environment Element (ACEE) obtained from the local security system 
when the user ID was authenticated. 

If the option is not coded, the application name specified in the APCB is 
used. 

The password contained in the TUB may be plain text or cipher text 
depending on the OPTCD=PLAIN | CIPHER operand. If cipher text, it is 
assumed that the password was encrypted using the encryption 
mechanism supplied by the local security system. The API merely 
provides the password to the security system in its encrypted form. 

The user ID or application name is also supplied to the transport 
provider. How this information is used is unspecified, and provider-
dependent.  

Default: Zero (no user ID; use application name for accounting and 
authorization).  

TCB = task_control_block_address  Used by the TCLOSE macro instruction to specify the TCB address of a 
task that is to receive control of an endpoint when closed with 
OPTCD=PASS.  

A value of zero causes the endpoint to be passed to any task that issues a 
complementary TOPEN macro instruction.  

Default: Zero (pass to any task).  

ASCB =  
address_space_control_blk_addr  

TCLOSE macro instruction uses this option to specify the ASCB address 
of an address space that is to receive control of an endpoint when closed 
with OPTCD=PASS.  

A value of zero is taken to mean the current address space.  

Default: Zero (pass to current address space). 

Assembler Language Macro Instructions    1–159 



TPL 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  When a request is issued in asynchronous mode, control is immediately 
returned to the application program after the API accepts the request.  

When the requested function completes, the API does one of these 
actions: 

■  If an ECB was specified, (either internal or external), the API posts a 
completion indicator in the event control block. The application 
program must issue a TCHECK or system WAIT macro instruction 
to determine whether the ECB has been posted. If a system WAIT or 
similar technique is used, the application program must still issue a 
TCHECK macro instruction to mark the TPL inactive, and to cause 
entry to the SYNAD or LERAD exit routine if the request completes 
with an error. 

■  If the EXIT operand is in effect for the TPL, the API schedules the 
exit routine indicated by this operand. The TPL exit routine should 
issue the TCHECK macro instruction to set the TPL inactive, and to 
cause entry into a SYNAD or LERAD exit routine if the requested 
function completed with an error. TCHECK must be issued even if a 
SYNAD or LERAD exit routine was not provided. 

Note: For more information on task synchronization, see the TCPaccess 
Assembler API Concepts. 

 The application program should not modify an active TPL. A TPL is 
considered active from the time a request is accepted until it is marked 
inactive by the TCHECK macro instruction. Modifying an active TPL 
yields unpredictable results, and may cause the request or application 
program to terminate abnormally.  

1–160     Assembler API Programmer Reference 



TPL 

 The coding of the ECB and EXIT operands must be consistent with the 
OPTCD operand. For example, if OPTCD=SYNC is indicated, the ECB 
and EXIT operands should not be coded. However, since synchronous 
mode uses an internal ECB, ECB=INTERNAL is permitted when 
OPTCD=SYNC is indicated. 

If an external ECB or exit routine is specified, the default synchronization
mode is changed to asynchronous. If OPTCD=SYNC is indicated in this 
case, an error message is generated at assembly time.  

Default: SYNC (synchronous mode). 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether items being returned to the application program by 
the transport provider are truncated if they do not fit within the storage 
area provided.  

These actions are taken in accordance with the setting of this option: 

OPTCD=TRUNC the data or information being returned is truncated at 
the end of the storage area, and the request is completed conditionally as 
long as no other errors occur. The length of the storage area as provided 
by the application program remains unchanged, and the residual data is 
discarded. TCTRUNC is set in the conditional completion code. 

Note: If OPTCD=TRUNC is specified, and a transport function 
completes conditionally with TCTRUNC set, some significant data may 
have been lost. The application programmer should be cautious when 
invoking this option, and should be fully aware of what data or 
information might be discarded. The TINFO macro instruction can be 
used to determine the maximum lengths for various data types 
supported by the transport provider. 

OPTCD=NOTRUNC no data or information is written into the storage 
area, and the request is completed abnormally. The storage area length is 
not changed, and there is no way for the application program to 
determine how much of a deficit there was. 

Default: NOTRUNC (truncation disallowed).  

Assembler Language Macro Instructions    1–161 



TPL 

OPTCD = NEGOT | 
NONEGOT  

Indicates whether protocol options associated with a request can be 
negotiated to an inferior value if the transport provider cannot support 
the option as specified. 

 These actions are taken in accordance with the setting of this option: 

OPTCD=NEGOT the transport provider is free to negotiate an option to 
an inferior value in order to complete the requested function. If no other 
errors occur, the request is completed conditionally. TCNEGOT is set in 
the conditional completion code. In some cases, the negotiated value is 
returned to the application program at the completion of the request, and
in others, an additional macro instruction must be issued to retrieve the 
negotiated value. 

Note: This option provides a degree of independence from the transport 
provider and the particular protocol in use.  

OPTCD=NONEGOT the transport provider may not negotiate an option 
to an inferior value. If the transport provider cannot support the option 
as indicated, the request is completed abnormally.  

If the application requested a certain quality of service, a lower quality of 
service may work nearly as well, albeit with diminished performance. 

Portability of an application is enhanced when the dependence on 
protocol options is minimized.  

Default: NoneGOT (negotiation disallowed). 

OPTCD = BLOCK | NOBLOCK Indicates whether the issuing task can be suspended if the TPL macro 
instruction cannot be completed immediately.  

OPTCD=BLOCK (and no connect indicated was generated) the issuing 
task is suspended until a connection request arrives. 

OPTCD=NOBLOCK the macro instruction is completed immediately, 
and an abnormal return code indicates that the task would have been 
suspended for an indefinite period. 

The TPL macro instruction can be used to poll for new connect 
indications. If a connect indication is available, the request is completed 
as usual. Otherwise, the request is completed abnormally and the 
transport user can try again after delaying an appropriate period. 

1–162     Assembler API Programmer Reference 



TPL 

 In either case, if a connect indication was already generated, the TPL 
macro instruction completes normally without suspending the issuing 
task.  

Default: BLOCK (suspend issuing task if necessary). 

OPTCD = ASSIGN | USE  Indicates in a TBIND macro instruction whether a protocol address 
provided by the application program is to be bound to the endpoint, or 
the transport provider is to assign a local protocol address and return the 
value to the application program.  

OPTCD=ASSIGN if indicated, the transport provider assigns an address 
and return the value in the storage area designated by the ADLEN and 
ADBUF operands.  

OPTCD=USE if indicated, the ADLEN and ADBUF operands designate a 
storage area that must contain a valid protocol address. 

Default: USE (use protocol address provided).  

OPTCD = LOCAL | REMOTE  Indicates in a TADDR macro instruction whether the transport provider 
should return the local protocol address bound to the indicated 
endpoint, or the remote protocol address connected to, or associated 
with, the endpoint. 

OPTCD=LOCAL a local address must have already been bound to the 
endpoint. 

OPTCD=REMOTE the endpoint must be connected to (for connection-
mode service), or associated with (for connectionless-mode service), a 
remote protocol address. 

If either of these conditions is violated, the TADDR function is 
completed abnormally.  

Default: LOCAL (return local protocol address).  

Assembler Language Macro Instructions    1–163 



TPL 

OPTCD = PRIMARY | 
SECNDRY | STATS  

Type of information requested with a TINFO macro instruction.  

Valid information types are:  

PRIMARY—Designates primary protocol information whose format and 
meaning is standardized for all transport providers. The application 
program can use this information to determine the basic characteristics 
of the transport service and limits of the transport provider.  

SECNDRY—Designates secondary protocol information whose format 
and meaning is specific to the transport service being used. This 
information includes internal protocol and state variables that govern the
operation of the transport protocol. Transport providers are not required 
to support this option code. Refer to the appropriate appendix at the end 
of this reference for more information concerning a specific transport 
provider.  

STATS—Designates statistical information recorded by the transport 
provider whose format and meaning is specific to the transport service 
being used. Transport providers are not required to support this option 
code. Refer to the appropriate appendix at the end of this reference for 
more information concerning a specific transport provider.  

Default: PRIMARY (return basic protocol information).  

OPTCD = DECLARE | VERIFY 
| QUERY | DEFAULT  

Action that the TOPTION macro instruction should perform. Protocol 
options that are the subject of these actions are contained or returned in 
an option list designated by the OPLEN and OPBUF operands. One of 
these actions may be indicated:  

DECLARE—The options specified by the application program are 
invoked, and the option list is updated with the inferior value of any 
negotiated options.  

VERIFY—The options specified by the application program are verified, 
and the option list is updated with the inferior value of any negotiated 
options.  

QUERY—The current value of options selected by the application 
program are returned.  

DEFAULT—The default value of options selected by the application 
program are returned. 

1–164     Assembler API Programmer Reference 



TPL 

 The type, number, and format of protocol options supported by a 
transport provider are protocol specific. Refer to the appropriate 
appendix at the end of this reference for more information on specific 
transport providers.  

Default: DECLARE (invoke protocol options). 

OPTCD = TP | API  Indicates whether the option list identified by the OPBUF and OPLEN 
operands contains transport interface or transport provider options.  

OPTCD=API the option list contains interface options that are processed 
solely by the API. 

OPTCD=TP the option list is passed to the transport provider for 
processing. 

Transport interface and transport provider options can only be 
manipulated with separate invocations of the TOPTION macro 
instruction.  

Default: TP (transport provider options). 

OPTCD = MORE | NOMORE  Indicates for a TSEND macro instruction whether the application 
program intends to immediately send more data, or pause momentarily 
until it has more data to send. 

OPTCD=MORE the application program expects to immediately issue 
another TSEND macro instruction at the same endpoint. 

OPTCD=NOMORE the application program has no more data to send, 
but intends to leave the connection established, and may resume sending 
data later. 

The interpretation of this option code by the transport provider is 
protocol dependent. The intent is that the transport provider uses this 
information to augment its packetizing algorithm, and deduce when 
unsent data must be forwarded on the connection. Not all connection-
mode transport providers are required to interpret this option code, but 
all are required to accept it. If the TSEND macro instruction is executed 
in synchronous mode, OPTCD=MORE is ignored. 

 No implication is drawn about message boundaries by the indication of 
OPTCD=NOMORE. If the underlying transport protocol can preserve 
logical boundaries within the data stream, then such boundaries should 
be indicated with OPTCD=EOM.  

Default: NOMORE (send data immediately). 

Assembler Language Macro Instructions    1–165 



TPL 

OPTCD = NORMAL | 
EXPEDITE  

Indicates for a TSEND macro instruction whether the user data should 
be sent as normal or expedited data. 

OPTCD=NORMAL the data associated with the request is to be sent as 
normal data. 

OPTCD=EXPEDITE the data is to be sent as expedited data. 

The distinction between normal and expedited data is left to the 
interpretation of the transport provider.  

Default: NORMAL (send data as normal data).  

OPTCD = EOM | NOTEOM  Indicates whether the data associated with a TSEND or TSENDTO 
request is a complete message or datagram, or is continued with one or 
more subsequent macro instructions.  

 OPTCD=EOM the last byte of data corresponds to the end of the 
message or datagram. 

OPTCD=NOTEOM the end of the message or datagram does not occur 
with this request, and is continued with at least one more TSEND or 
TSENDTO macro instruction. 

Transport providers operating in connectionless-mode are not required 
to accept it. If supported, the notion of a message (or TSDU) is 
synonymous with datagram and the significance of the 
OPTCD=NOTEOM indication is only a local phenomenon.  

Default: EOM (end of TSDU or datagram).  

OPTCD = DIRECT | INDIR Format of the user data parameter. 

OPTCD=DIRECT the DABUF and DALEN operands identify a storage 
area into which data should be received directly. 

OPTCD=INDIR the storage area identified by these operands contains 
an indirect data vector. An indirect data vector consists of a list of 
address-length pairs, with each element identifying a separate segment 
of non-contiguous storage. In this case, DABUF is the address of the first 
element in the list, and DALEN is the total length of the list.  

Note: The length of the vector must be a multiple of eight, and the total 
amount of data that can be received is the sum of the lengths of each 
data segment. 

Default: DIRECT (send directly from data area). 

1–166     Assembler API Programmer Reference 



TPL 

OPTCD = ABORT | CLEAR  Action to be taken by the transport provider when the application 
program issues a TDISCONN, TREJECT, or TRELACK macro 
instruction at an endpoint for which a disconnect indication is already 
pending. 

OPTCD=ABOR the request is completed abnormally, and the 
application program must clear the pending disconnect indication with 
a TCLEAR macro instruction. 

OPTCD=CLEA the TDISCONN, TREJECT, or TRELACK macro 
instruction is completed normally (or conditionally) if no other errors 
occur. 

Default: CLEAR (clear pending disconnect indication). 

OPTCD = DELETE | PASS Disposition of the endpoint designated in the TPL associated with a 
TCLOSE macro instruction.  

OPTCD=DELETE the endpoint is closed, and any record of the endpoint 
is deleted from all internal tables and local storage. 

OPTCD=PASS the endpoint is not closed, and control of the endpoint is 
passed to the designated task or address space. 

When control is being passed, the TCLOSE request does not complete 
until a complementary TOPEN (OPTCD=OLD) macro instruction is 
issued by the acquiring task or address space.  

Default: DELETE (delete endpoint).  

OPTCD = TUB | ACEE  Format of user ID information referenced by the USER operand. 

OPTCD=TUB user ID, group, and password information are provided in
a Transport User Block (TUB). 

OPTCD=ACEE the user information is contained in an Accessor 
Environment Element (ACEE) obtained from the local security system. 

Default: TUB (user information provided in TUB).  

OPTCD = PLAIN | CIPHER  Indicates whether the password contained in the Transport User Block 
(TUB) designated with the USER operand has been encrypted, or is in its 
plain text form.  

OPTCD=PLAIN the password is in plain text. 

OPTCD=CIPHER the password is encrypted. 

Assembler Language Macro Instructions    1–167 



TPL 

The API uses this information when requesting user ID and password 
verification from the local security system.  

Default: PLAIN (password in plain text). 

OPTCD = NOFULL | FULL Completion processing for this request based on the amount of data.  

OPTCD=NOFULL this request is completed as soon as any data arrives. 

OPTCD=FULL indicates that this request is not to be completed until 
either a specified timeout occurs, or the requested amount of data 
arrives to fill up this request. 

Note: Use of OPTCD=FULL requires that you use OPTCD=TIMEOUT. 

Default: NOFULL. 

OPTCD = NOTIMEOUT | 
TIMEOUT 

Completion processing for this request based on time.  

OPTCD=NOTIMEOUT this request will not be timed. 

OPTCD=TIMEOUT this request will be completed at the end of a 
specified time, regardless of the amount of data available. 

Note: Use of OPTCD=TIMEOUT requires that you use OPBUF and 
OPLEN to specify the timeout option. However, use of 
OPTCD=TIMEOUT does not require that you use OPTCD=FULL 

Default: NOTIMEOUT. 

OPTCD = MBUF | NOMBUF  DABUF parameter is the address of a TCPaccess MBUF, rather than a 
data buffer or indirect buffer list. 

OPTCD=MBUF review the macro using the parameter to determine how
the option code will be processed. 

OPTCD=NOMBUF the DABUF parameter is processed normally. 

Note: This OPTCD is intended only for applications internal to 
TCPaccess. 

Default: NOMBUF. 

1–168     Assembler API Programmer Reference 



TPL 

FNCCD = function_code  The API function to execute.  

Valid values are: 

TACCEPT Accept connection request 

TADDR Get protocol address  

TBIND  Bind local protocol address 

TCLEAR Clear disconnect indication 

TCLOSE Close endpoint 

TCONFIRM Receive connect confirmation 

TCONNECT Initiate connection request 

TDISCONN Initiate abortive disconnect 

TINFO  Get transport protocol information 

TLISTEN Listen for connect indications 

TOPTION Endpoint option management 

TRECV  Receive from connected transport user 

TRECVERR Receive datagram error indication 

TRECVFR Receive a datagram 

TREJECT Reject connection request 

TRELACK Acknowledge orderly release indication 

TRELEASE Initiate or complete orderly release 

TRETRACT Retract a pending TLISTEN request 

TSEND  Send to connected transport user 

TSENDTO Send a datagram 

TUNBIND Unbind local protocol address 

TUSER  Associate user with endpoint 

 If a function code is specified, the definition and use of other operands is 
determined by the designated function. The operands that may be 
coded, and the rules that apply, are the same as those defined for the 
API macro instruction that corresponds to the function code. If a 
function code is not specified, the value already stored in the TPL 
designates the function to execute.  

Default: Not indicated (to be provided later).  

Assembler Language Macro Instructions    1–169 



TPL 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the transport service request associated with this TPL completes. The 
ECB can be any fullword of storage aligned on a fullword boundary.  

The ECB and EXIT operands share the same storage location in the TPL, 
and are therefore mutually exclusive. 

If asynchronous mode was specified (OPTCD=ASYNC), the ECB/EXIT 
field of the TPL (TPLECBXR) is used in this manner: 

■  If ECB=address is specified, then the API uses the field as the 
address of an external ECB. The application program is responsible 
for issuing a TCHECK macro instruction to check and clear this 
ECB. 

■  If EXIT=address is specified, then the API uses the field as the 
address of the TPL exit routine, and schedules the routine as 
indicated in the following EXIT operand description. 

■  If ECB=INTERNAL is specified, then the API uses the field as an 
internal ECB. The application program must issue a TCHECK macro 
instruction to check and clear this ECB.  

 If synchronous mode was specified (OPTCD=SYNC), the TPL is flagged 
to be processed as if ECB=INTERNAL was specified, and the ECB/EXIT 
field is used as an internal ECB, which is checked and cleared 
automatically.  

 The API clears an internal ECB when it starts processing any TPL-based 
macro instruction, and also when the TPL is checked. However, an 
external ECB is only cleared when the TPL is checked. 

An application program using external ECBs must be sure that the 
external ECB is cleared before the next TPL-based macro instruction is 
issued.  

For more information about asynchronous processing, see TCPaccess 
Assembler API Concepts, which discusses synchronization and 
exceptional event handling.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address  Address of a routine to be scheduled when the request represented by 
this TPL completes. The EXIT and ECB operands share the same storage 
location in the TPL, and are therefore mutually exclusive. 

The TPL exit routine is scheduled only if asynchronous mode was 
indicated by OPTCD=ASYNC. If synchronous mode was indicated, the 
exit routine is not used. If one is specified with this operand, the address 

1–170     Assembler API Programmer Reference 



TPL 

is overwritten with an internal ECB before the request completes. For 
further information on asynchronous processing, refer to TCPaccess 
Assembler API Concepts.  

Default: Not indicated (no TPL exit routine). 

MF = ( L | M, [ tpl_address ] )  List or modify form of the TPL macro instruction.  

The second sublist operand, tpl_address, is the address of a storage area 
that contains the Transport Service Parameter List (TPL). If the TPL 
address is not provided, or the MF operand is not coded, the TPL is 
generated in line with the macro instruction. If the generate or execute 
form the TPL macro instruction is desired, the TEXEC macro instruction 
should be used.  

Read List, Generate, Modify, and Execute Forms for valid combinations 
of the MF subparameters. 

Default: Not indicated (nonreentrant, inline list). 

Completion Information 

If the MF operand is not coded, or MF=L is indicated, the TPL is generated at 
assembly time, and no executable code is expanded.  

Otherwise, the macro instruction expansion contains executable code to generate 
or modify the TPL. If the macro instruction completes successfully, the general 
return code in register 15 is set to zero (TROKAY); otherwise, the general return 
code is set to 12 (TRFATLPL). The function code is returned in register zero, and 
the TPL address is returned in register one.  

Return Codes 

The following table lists the symbolic names for the TPL return codes. The values 
associated with the symbolic names can be found in the TPL macro expansion.  

 

General Return Code 
(Register 15) 

Recovery Action Code 
(Register 0) 

Conditional or Specific 
Error Code  

TROKAY  func. code n/a  

TRFATLPL  func. code n/a  

Assembler Language Macro Instructions    1–171 



TPL 

Usage Information 

The TPL macro instruction is used to generate or modify a Transport Service 
Parameter List (TPL). The TPL may be generated in line with the macro 
instruction, or remotely in a storage area indicated by the MF operand. The TPL 
macro instruction is complementary with the TEXEC macro instruction, which is 
used to execute a TPL. 

Any operand that can be specified on other TPL-based macro instructions (except 
TOPEN) can be specified on the TPL macro instruction. However, this macro 
instruction does not check for consistency between operands used by different 
functions. 

Example QLSTN and NEWEP can be specified on the same TPL macro instruction, 
although QLSTN is used by TBIND, and NEWEP is used by TACCEPT. 
However, QLSTN and SEQNO cannot be specified together since they both 
occupy the same location in the TPL. If the latter were attempted, the TPL macro 
instruction would generate an error at assembly time.  

The TPL macro instruction is typically used to generate a TPL that is not specific 
to a particular function. No function-dependent processing is performed by the 
TPL macro instruction, even if the FNCCD operand is coded. It is generally 
advisable to use the list and modify forms of the appropriate TPL-based macro 
instructions when function-specific parameter lists are required.  

The TPL macro instruction can generate a parameter list for any API TPL-based 
service request, except TOPEN.  

Example The macro instruction TPL QLSTN=5,FNCCD=TBIND,MF=(L,BINDTPL) 
generates the same parameter list as QLSTN=5,MF=(L,BINDTPL) for the TBIND 
macro. 

The TPL macro instruction is run-to-completion, and a TCHECK macro 
instruction should never be issued. 

1–172     Assembler API Programmer Reference 



TRECV 

TRECV 
Receive Normal or Expedited Data on a Connection—The TRECV macro 
instruction is used to receive normal or expedited data arriving at an endpoint 
from the connected (or associated) transport user. TRECV is normally used to 
receive data on an endpoint operating in connection mode, but when supported 
by the transport provider, datagrams may be received at an endpoint operating 
in connectionless-mode if the application program has created an association 
with the transport user.  
[ symbol ] TRECV [ EP = endpoint_id ] 
                 [ ,DALEN = user_data_length ] 
                 [ ,DABUF = user_data_address ] 
                 [ ,DAALET = user_data_alet ] 
                 [ ,OPBUF = protocol_options_address ] 
                 [ ,OPLEN = protocol_options_length ] 
                 [ ,OPALET = protocol_options_alet ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,BLOCK | NOBLOCK ] 
                              [ ,DIRECT | INDIR ] 
                              [ ,NOPEEK | PEEK ] 
                              [ ,NOFULL | FULL ] 
                              [ ,NOTIMEOUT | TIME OUT ]  
                              [ ,MBUF | NOMBUF ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ]  

EP = endpoint_id  Endpoint at which the TRECV macro instruction executes.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

DALEN = user_data_length  Length (in bytes) of a data storage area or an indirect data vector 
identified by the DABUF operand.  

The length is updated when the request is completed to reflect the actual 
amount of data received. If the value indicated for DALEN is zero, no 
data is returned to the application program.  

Default: Zero (return no user data). 

Assembler Language Macro Instructions    1–173 



TRECV 

DABUF = user_data_address  Address of a storage area for receiving data that has arrived at the 
endpoint.  

If the data mode is direct, then the value specified is the address of a 
contiguous storage area for receiving the data. 

If the data mode is not direct, then the value specified must be the 
address of an indirect data vector, and each element of the vector must 
have been initialized to point to an individual segment of non-
contiguous storage. 

All available data is moved into the storage area, and the length of the 
storage area is updated to indicate the amount of data received. If more 
data is available than fits in the storage area provided, the storage area is
filled, and the remaining data is held by the transport provider until 
another TRECV macro instruction is issued.  

All user data received is application-dependent, and is not interpreted 
by the API or the transport provider. The maximum amount of data that 
can be received with a single TRECV macro instruction is provider-
dependent, and can be determined with the TINFO macro instruction.  

The storage area can be aligned on any boundary convenient for the 
application program.  

Default: Zero (no user data storage area).  

DAALET = user_data_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

The DAALET value must be an ALET contained in the Dispatchable 
Unit Access List (DUAL) of the caller.  

The DAALET parameter may be used only if OPTCD=EXTEND is also 
specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPLEN = protocol_options_length Length (in bytes) of the protocol option list identified by the OPBUF 
operand. 

A value of zero indicates there is no protocol option list.  

Default: Zero (no protocol option list). 

1–174     Assembler API Programmer Reference 



TRECV 

OPBUF = 
protocol_options_address 

Address of a storage area containing a protocol option list. The area 
must contain a list of variable-length protocol options, with each option 
identified by its length and name. Each entry in the list must also 
contain room for an options value. 

The type, number, and format of protocol options are provider-
dependent and the maximum size of the option list can be determined 
by issuing a TINFO macro instruction.  

The storage area can be aligned on any boundary convenient to the 
application program. 

Default: Zero (no protocol option list). 

Note: The only option currently supported on the TRECV statement is 
TPOPRTIM. 

OPALET = protocol_options_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the OPBUF parameter.  

The OPALET value must be an ALET contained in the Dispatchable Unit
Access List (DUAL) of the caller. 

The OPALET parameter may be used only if OPTCD=EXTEND is also 
specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

Assembler Language Macro Instructions    1–175 



TRECV 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TRECV macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode and control is 
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request is executed in asynchronous mode and 
control is returned immediately after scheduling the TRECV request. 
The application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode).  

OPTCD = BLOCK | NOBLOCK Indicates whether the issuing task can be suspended if the TRECV 
macro instruction cannot be completed immediately. 

OPTCD=BLOCK(SYNC is also set, and no data is available to be 
received) the issuing task is suspended until more data is received at the 
endpoint. 

OPTCD=NOBLOCK the TRECV macro instruction is completed 
immediately, and an abnormal return code indicates that the task would 
have been suspended for an indefinite period. 

In either case, if data is available to be received, the TRECV macro 
instruction completes normally without suspending the issuing task. 
When OPTCD=NOBLOCK is indicated, the TRECV macro instruction 
can be used to poll for available data. If user data was already received, 
and is available, the request is completed as usual. Otherwise, the 
request is completed abnormally, and the transport user can try again 
after delaying an appropriate period.  

Default: BLOCK (suspend issuing task if necessary). 

1–176     Assembler API Programmer Reference 



TRECV 

OPTCD = DIRECT | INDIR  Format of the user data parameter. 

OPTCD=DIRECT the DABUF and DALEN operands identify a storage 
area into which data should be received directly. 

OPTCD=INDIR the storage area identified by these operands contains 
an indirect data vector.  

An indirect data vector consists of a list of address-length pairs, with 
each element identifying a separate segment of non-contiguous storage. 
In this case, DABUF is the address of the first element in the list, and 
DALEN is the total length of the list.  

The length of the vector must be a multiple of eight, and the total 
amount of data that can be received is the sum of the lengths of each 
data segment. 

Default: DIRECT (receive directly into data area).  

OPTCD = NOPEEK | PEEK Indicates whether or not received data will be consumed or browsed. 

OPTCD = NOPEEK the TRECV causes the received data to be 
consumed. That is, the data received into the buffer will be counted 
against the total number of bytes being received; it cannot be re-
received. 

OPTCD = PEEK the data received into the buffer is effectively browsed; 
it is not consumed. The overall length of data to be received is not 
decremented. The next non-PEEK will consume the data. 

Default: NOPEEK (consume data). 

OPTCD = NOFULL | FULL Completion processing for this request based on the amount of data.  

OPTCD=NOFULL this request is completed as soon as any data arrives. 

OPTCD=FULL indicates that this request is not to be completed until 
either a specified timeout occurs, or the requested amount of data 
arrives to fill up this request. 

Note: Use of OPTCD=FULL requires that you use OPTCD=TIMEOUT. 

Default: NOFULL. 

Assembler Language Macro Instructions    1–177 



TRECV 

OPTCD = NOTIMEOUT | 
TIMEOUT 

Completion processing for this request based on time.  

OPTCD=NOTIMEOUT this request will not be timed. 

OPTCD=TIMEOUT this request will be completed at the end of a 
specified time, regardless of the amount of data available. 

Note: Use of OPTCD=TIMEOUT requires that you use OPBUF and 
OPLEN to specify the timeout option. However, use of 
OPTCD=TIMEOUT does not require that you use OPTCD=FULL. 

Default: NOTIMEOUT. 

OPTCD = MBUF | NOMBUF How the DABUF parameter is handled. 

OPTCD = MBUF the DABUF parameter is ignored and the MBUF 
address is placed in TPLDABUF upon the completion of the request. 

OPTCD = NOMBUF the DABUF parameter is processed normally. 

Note: This OPTCD is intended only for applications internal to 
TCPaccess. 

Default: NOMBUF. 

ECB = INTERNAL | 
event_control_block_addr  

Location of an Event Control Block (ECB) to be posted by the API when 
the TRECV macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used to 
store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

1–178     Assembler API Programmer Reference 



TRECV 

EXIT = tpl_exit_routine_address  Address of an exit routine to be scheduled when the TRECV macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

MF = ( I | L | G | M | E ,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TRECV macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

Refer to List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Assembler Language Macro Instructions    1–179 



TRECV 

Completion Information 

The TRECV macro instruction completes normally when data is available at the 
endpoint, and has been moved into the storage area provided by the application 
program. The length of the storage area is updated to indicate the amount of data 
received. 

The following is a list of the options set in the TPL OPTCD field on return to the 
application program:  
 

NOTEOM There is more data, and the current transport service data 
unit must be received with multiple TRECV macro 
instructions. 

If the transport provider does not support this concept of a 
TSDU, NOTEOM is not indicated. 

EOM  
(NOTEOM not set) 

The last byte of data received corresponds to the end of the 
TSDU.  

MORE More data is buffered for the endpoint, regardless of whether 
the transport provider supports the concept of a TSDU.  

The data may be a continuation of the current TSDU, or the 
beginning of the next TSDU. 

NOMORE  
(MORE not set) 

No data is buffered. 

EXPEDITE The data is expedited data. 

NORMAL  
(EXPEDITE not set) 

The data is normal data. 

NOTEOM and MORE apply to expedited data in the same way they apply to 
normal data. If NOTEOM and EXPEDITE are indicated together, the data is the 
beginning or continuation of an expedited transport service data unit that must 
be received with multiple TRECV macro instructions. If EOM and EXPEDITE are 
indicated, the data comprises the end of an ETSDU.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

1–180     Assembler API Programmer Reference 



TRECV 

If the TRECV macro instruction completes abnormally, no data is moved into the 
storage area, and the OPTCD indicators are not set. The state of the endpoint is 
unchanged. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field may 
also contain a specific error code that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TRECV return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY  TCTIME 

TRFAILED TAINTEG TEPROTO  TEDISCON TERELESE 
  

 TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TEUNSUPF TESTOP TETERM 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDDATA TEBDEXIT TEBDOPTN 

 TAPROCED TEAMODE  TESTATE TEREQOVR 
TEBUFOVR 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely
due to corrupted data areas maintained within 
the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Assembler Language Macro Instructions    1–181 



TRECV 

Usage Information 

The TRECV macro instruction is used to receive normal or expedited data that 
has arrived at an endpoint. The data may be part of a byte stream or message 
stream sent over a connection, or part (or all) of a datagram received via an 
association with the remote transport user. 

If the transport service type is a connection-mode byte stream, data buffered at 
the endpoint is moved into the storage area provided by the application 
program. If the total amount of buffered data is less than the size of the storage 
area, all data is moved and the length of the storage area is updated to reflect the 
actual amount of data moved. NOMORE is also set in the TPL to indicate no 
more data is buffered at the endpoint. Otherwise, the storage area is filled to 
capacity, and MORE is set to indicate that more data is ready to be received. 

If the transport service type is a connection-mode message stream, processing is 
similar. However, the transport provider must preserve the logical boundary of 
TSDUs, and indicate where the boundaries occur. If the data moved into the 
storage area comprises the end of the TSDU, EOM is set in the TPL to indicate 
that the TSDU was completely received. Otherwise, NOTEOM is set to indicate 
another TRECV macro instruction should be issued to receive the end of the 
TSDU. 

If the buffered data contains the end of one TSDU and the beginning of the next 
TSDU, only data up to the end of the current TSDU is moved into the storage 
area. In other words, data from two TSDUs is never moved into the storage area 
at one time. Another TRECV macro instruction must be executed to receive the 
next TSDU. MORE is set to indicate another TSDU is available to be received.  

If the transport service type is connectionless-mode using associations, the 
datagram is handled like a TSDU. If the entire datagram does not fit within the 
storage area, NOTEOM is set in the TPL indicating that another TRECV macro 
instruction must be issued to receive the continuation of the datagram. If the data 
moved contains the end of the datagram, and another datagram is available at 
the endpoint, MORE is set to indicate a new datagram exists. 

If the transport provider supports expedited data, the same macro instruction is 
used to receive it. TOEXPDTE is set in the TPL to distinguish normal data from 
expedited data. In a manner similar to the handling of TSDUs, normal and 
expedited data is never mixed. Datagrams are always classified as normal data. 

1–182     Assembler API Programmer Reference 



TRECV 

The application program does not ask to receive expedited data; rather, it 
requests to receive data, and the API indicates with the TOEXPDTE flag whether 
the data received was expedited or normal. The distinction between normal and 
expedited data is provider-dependent. Some transport providers can process 
expedited data out-of-band, and if normal and expedited data are available at the 
same time, expedited data is delivered ahead of normal data. However, an 
expedited TSDU can never interrupt a normal TSDU. That is, a normal TSDU 
must be received in its entirety before the expedited TSDU can be received. 
Transport providers that do not support out-of-band expedited data must deliver 
the data in sequence (for example, TCP urgent data). In this case, the application 
program should use the indication to expedite processing of the data stream.  

TCP Provider Session Options 

These options are valid only for TCP provider sessions. Each of these values is 
four bytes long, so the option length must be eight. Refer to TOPTION for format 
information. 

If the option is TPOPRTIM, the time, in seconds, to wait for data to arrive to 
satisfy this request. This option is valid only when specified on a TRECV TPL. 

Note: TPOPRTIM must be specified with OPTCD=TIMEOUT. It is possible for a 
TRECV to complete with zero bytes of data, or with less than a full request if 
used with OPTCD=FULL. The return values of TAOKAY and TCTIME indicate 
this situation. 

Return Indicators  

The OPTCD field of the TPL is used by the API data transfer routines to return 
indicators that can be tested by the application program. The indicators returned 
by the TRECV macro instruction correspond to the indicators set by the TSEND 
macro instruction. These indicators are located in the function-specific option 
code field mapped by the TPL DSECT as TPLOPCD2.  

These bits are used by the TRECV macro instruction: 

■  If set, the TONOTEOM bit corresponds to OPTCD=NOTEOM, and indicates 
that another TRECV macro instruction must be issued to receive the end of 
the TSDU. 

 If not set, the TONOTEOM bit corresponds to OPTCD=EOM, and indicates 
the last byte of data moved into the storage area corresponds to the end of 
the TSDU. 

■  If set, the TOMORE bit corresponds to OPTCD=MORE and indicates that 
more data is buffered at the endpoint. The data is not necessarily part of the 
current TSDU. 

Assembler Language Macro Instructions    1–183 



TRECV 

 If not set, the TOMORE bit corresponds to OPTCD=NOMORE, and indicates 
all of the data buffered at the endpoint has been moved into the application 
program’s storage area.  

■  If set, the TOEXPDTE bit corresponds to OPTCD=EXPEDITE, and indicates 
that the data moved into the storage area is expedited data.  

 If not set, the TOEXPDTE bit corresponds to OPTCD=NORMAL, and 
indicates that the data moved into the storage area is normal data. If the 
transport provider supports the concept of an expedited transport service 
data unit, TONOTEOM is used to mark the continuation of the ETSDU. 

The storage area provided by the application program can be a simple, 
contiguous segment of storage, or a set of non-contiguous segments indirectly 
addressed via a data vector. 

■  If the option is OPTCD=DIRECT, user data is transferred into the storage 
area identified by the DABUF and DALEN operands. The length of the 
storage area is updated to reflect the actual amount of data transferred.  

■  If the option is OPTCD=INDIR, DABUF and DALEN identify a storage area 
initialized with the addresses and lengths of non-contiguous storage 
segments into which the user data is to be transferred. The length of the 
indirect data vector is updated to reflect the actual amount of data 
transferred.  

Each entry in an indirect data vector consists of a fullword address followed by a 
fullword length. If the length is zero, the entry is ignored. If the length is 
nonzero, the address must reference a valid storage area, and can be aligned on 
any boundary convenient for the application program. The length of the vector is 
used to determine the number of entries in the list. The sum of the lengths must 
not exceed the maximum interface data unit defined for the endpoint. 

Unlike most other macro instructions, multiple TRECV macro instructions can be 
issued without waiting for the first to complete. However, each macro 
instruction requires its own TPL. The maximum number that can be issued 
before one must complete is an API variable that can be modified by the 
TOPTION macro instruction. The default value is set when the API is installed. 
TRECV macro instructions are completed in the order in which they are issued.  

Data received with the TRECV macro instruction is buffered in the API address 
space before it is moved into the storage area provided by the application 
program. The total amount of receive buffering allocated for an endpoint is also 
an API option. For TLI-mode sockets, zero (0) is returned in the residual count 
field. For socket mode, the residual count returned when the TRECV macro 
instruction completes is set to the total number of bytes placed into the data 
buffers. 

1–184     Assembler API Programmer Reference 



TRECVERR 

The data received is application-dependent and is not interpreted by the API or 
the transport provider. You can determine the maximum amount that can be 
received with a single TRECV request by issuing a TINFO macro instruction. 

TRECVERR 
Receive Datagram Error Indication—The TRECVERR macro instruction is used 
to receive an error indication associated with a datagram previously sent on an 
endpoint operating in connectionless-mode. A protocol-specific datagram error 
code is returned to the application program, as well as the remote protocol 
address.  
[ symbol ] TRECVERR [ EP = endpoint_id ] 
                    [ ,ADLEN = protocol_address_length ] 
                    [ ,ADBUF = protocol_address_address ] 
                    [ ,ADALET = protocol_address_alet ] 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                 [ ,SYNC | ASYNC ] 
                                 [ ,TRUNC | NOTRUNC ] ) ] 
                    [ ,ECB = INTERNAL | event_control_block_addr ] 
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TRECVERR macro instruction is executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

ADLEN = 
protocol_address_length  

Length (in bytes) of the protocol address storage area identified by the 
ADBUF operand.  

The length is updated when the request is completed to reflect the actual 
length of the protocol address returned. If the length is zero, the protocol
address of the remote transport user is not returned to the application 
program.  

Default: Zero (return no protocol address). 

Assembler Language Macro Instructions    1–185 



TRECVERR 

ADBUF = 
protocol_address_address  

Address of a storage area for returning the protocol address of the 
remote transport user.  

The storage area should be large enough to contain the entire address. 
The format of the protocol address is provider-dependent, and its 
maximum size can be determined by issuing a TINFO macro instruction.
The storage area can be aligned on any boundary.  

Default: Zero (no protocol address storage area). 

ADALET = protocol_address_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the ADBUF parameter. The 
ADALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller.  

The ADALET parameter can be used only if OPTCD=EXTEND is also 
specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing the TRECVERR macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control 
is not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TRECVERR request. 
The application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode).  

1–186     Assembler API Programmer Reference 



TRECVERR 

OPTCD = TRUNC | 
NOTRUNC  

Indicates whether the protocol address or options returned to the 
application program by the transport provider should be truncated if 
they do not fit within the storage area provided.  

OPTCD=TRUNC the excess is truncated, and the TRECVERR macro 
instruction is completed conditionally as long as no other errors occur. 

OPTCD=NOTRUNC nothing is placed in the storage area, and the 
TRECVERR macro instruction is completed abnormally. 

Default: NOTRUNC (no truncation)  

ECB = INTERNAL | 
event_control_block_address 

Location of an Event Control Block (ECB) to be posted by the API when 
the TRECVERR macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used to 
store the ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TRECVERR macro 
instruction associated with this TPL completes.  

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

Assembler Language Macro Instructions    1–187 



TRECVERR 

MF = ( I | L | G | M | E,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TRECVERR 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TRECVERR macro instruction completes normally (or conditionally) when 
the information associated with a datagram error indication has been moved into 
the storage areas provided by the application program. The protocol address of 
the remote transport user is returned, and the storage length is updated to reflect 
the amount of information returned. A protocol-dependent error code is also 
returned in the DGERR field of the TPL associated with this request.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the protocol address returned to the application 
program was truncated to fit in the storage area provided. The TPL return code 
field is set accordingly. No other information is returned.  

If the TRECVERR macro instruction completes abnormally, no information is 
returned to the application program, and the datagram error indication (if any) 
remains pending. The state of the endpoint is unchanged. The general return 
code in register 15, and recovery action code in register zero, indicate the nature 
of the failure. The TPL return code field may also contain a specific error code 
that identifies a particular error.  

1–188     Assembler API Programmer Reference 



TRECVERR 

Return Codes 

The following table lists the symbolic names for the TRECVERR return codes. The values associated with 
the symbolic names can be found in the TPL macro expansion. 

 

General Return 
Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY TCTRUNC  

TRFAILED TAINTEG TEOVRFLO 

 TAENVIRO TESYSERR TESUBSYS TEDRAIN  
TESTOP TETERM TEUNSUPO 
TEUNSUPF 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT TEBADDR 

 TAPROCED TEAMODE TESTATE TENOERR  

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely
due to corrupted data areas maintained within 
the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Assembler Language Macro Instructions    1–189 



TRECVFR 

Usage Information 

The TRECVERR macro instruction is used to receive information associated with 
an error that occurred with a previously sent datagram. The transport provider 
returns the remote protocol address and options associated with the datagram, 
and a protocol-dependent error code that identifies the specific error. 

The error occurred after being sent with a TSENDTO macro instruction that 
completed normally. When the error is detected, the transport provider generates 
a datagram error indication. The TRECVERR macro instruction clears the 
pending indication and receives the information associated with the error. 

TRECVFR 
Receive a Datagram—The TRECVFR macro instruction is used to receive 
datagrams arriving at an endpoint operating in connectionless-mode. The user 
data and the remote protocol address of the sender are returned to the 
application program.  
[ symbol ] TRECVFR [ EP = endpoint_id ] 
                   [ ,ADLEN = protocol_address_length ] 
                   [ ,ADBUF = protocol_address_address ] 
                   [ ,ADALET = protocol_address_alet ] 
                   [ ,DALEN = user_data_length ] 
                   [ ,DABUF = user_data_address ] 
                   [ ,DAALET = user_data_alet ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] 
                                [ ,TRUNC | NOTRUNC ] 
                                [ ,BLOCK | NOBLOCK ] 
                                [ ,DIRECT | INDIR ] 
                                [ ,MBUF | NOMBUF ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

1–190     Assembler API Programmer Reference 



TRECVFR 

EP = endpoint_id  Endpoint at which the TRECVFR macro instruction executes.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  

ADLEN = 
protocol_address_length 

Length (in bytes) of the protocol address storage area identified by the 
ADBUF operand. 

When the request completes, the length is updated to reflect the actual 
length of the protocol address returned. If the length is zero, the protocol 
address of the sending transport user is not returned to the application 
program.  

Default: Zero (return no protocol address). 

ADBUF = 
protocol_address_address 

Address of a storage area for returning the protocol address of the sending 
transport user.  

The storage area should be large enough to contain the entire address. The 
format of the protocol address is provider-dependent, and its maximum size
can be determined by issuing a TINFO macro instruction. The storage area 
can be aligned on any boundary.  

Default: Zero (no protocol address storage area).  

ADALET = 
protocol_address_alet 

Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller. The ADALET parameter can be used only 
if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

Assembler Language Macro Instructions    1–191 



TRECVFR 

DALEN = user_data_length Length (in bytes) of a data storage area or an indirect data vector identified 
by the DABUF operand.  

When the request completes, the length is updated to reflect the actual 
amount of data received.  

If the value indicated for DALEN is zero, no data is returned to the 
application program.  

Default: Zero (return no user data).  

DABUF = user_data_address Address of a storage area for receiving data that has arrived at the endpoint. 

If the data mode is direct, the value specified is the address of a contiguous 
storage area for receiving the data. 

If the data mode is not direct, the value specified must be the address of an 
indirect data vector, and each element of the vector must have been 
initialized to point to an individual segment of non-contiguous storage. 

If more data is available than fits in the storage area provided, the storage 
area is filled, and the remaining data is held by the transport provider until 
another TRECVFR macro instruction is issued. Otherwise, all available data 
is moved into the storage area, and the length of the storage area is updated 
to indicate the amount of data received.  

All user data received is application-dependent, and is not interpreted by 
the API or the transport provider. The maximum amount of data that can be 
received with a single TRECVFR macro instruction is provider-dependent, 
and can be determined with the TINFO macro instruction. The storage area 
can be aligned on any boundary convenient for the application program.  

Default: Zero (no user data storage area). 

DAALET = user_data_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

The DAALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller. The DAALET parameter can be used only 
if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

1–192     Assembler API Programmer Reference 



TRECVFR 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that a 
subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TRECVFR macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TRECVFR request. The application 
program is responsible for issuing the TCHECK macro instruction.  

Default: SYNC (synchronous mode).  

OPTCD = TRUNC | 
NOTRUNC 

Indicates whether the protocol address returned to the application program 
by the transport provider should be truncated if it does not fit within the 
storage area provided.  

OPTCD=TRUNC the excess is truncated, and the TRECVFR macro 
instruction completes conditionally as long as no other errors occur. 

OPTCD=NOTRUNC nothing is placed in the storage area, and the 
TRECVFR macro instruction completes abnormally. 

Default: NOTRUNC (no truncation). 

Assembler Language Macro Instructions    1–193 



TRECVFR 

OPTCD = BLOCK | 
NOBLOCK 

Indicates whether the issuing task can be suspended if the TRECVFR macro 
instruction cannot be completed immediately.  

OPTCD=BLOCK (and no data is available to be received) the issuing task is 
suspended until more data is received at the endpoint. 

OPTCD=NOBLOCK the TRECVFR macro instruction completes 
immediately, and an abnormal return code indicates that the task would 
have been suspended for an indefinite period. 

When OPTCD=NOBLOCK is specified, the TRECVFR macro instruction can
be used to poll for available datagrams. If a datagram was received and is 
available, the request is completed as usual. Otherwise, the request is 
completed abnormally, and the transport user can try again after delaying 
an appropriate period. 

In either case, if a datagram is available to be received, the TRECVFR macro 
instruction completes normally without suspending the issuing task.  

Default: BLOCK (suspend issuing task if necessary). 

OPTCD = DIRECT | INDIR Format of the user data parameter.  

OPTCD=DIRECT the DABUF and DALEN operands identify a storage area 
into which data should be received directly. 

OPTCD=INDIR the storage area identified by these operands contains an 
indirect data vector. An indirect data vector consists of a list of address-
length pairs, with each element identifying a separate segment of non-
contiguous storage. In this case, DABUF is the address of the first element in
the list, and DALEN is the total length of the list.  

The length of the vector must be a multiple of eight, and the total amount of 
data that can be received is the sum of the lengths of each data segment. 

Default: DIRECT (receive directly into data area). 

OPTCD = MBUF | NOMBUF How to handle the DABUF parameter. 

OPTCD=MBUF the DABUF parameter is ignored and the MBUF address is 
placed in TPLDABUF upon the completion of the request. 

OPTCD=NOMBUF the DABUF parameter is processed normally. 

Note: This OPTCD is intended only for applications internal to TCPaccess. 

Default: NOMBUF. 

1–194     Assembler API Programmer Reference 



TRECVFR 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when the 
TRECVFR macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword boundary. If 
ECB=INTERNAL is coded, the TPL field normally used to store the ECB 
address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB operand
is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_addressAddress of an exit routine to schedule when the TRECVFR macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode was specified. 
In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E,  
[ tpl_address ] )  

Standard, list, generate, modify, or execute form of the TRECVFR macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to 
use for this request. If no MF operand is specified, the standard form is 
used.  

See List, Generate, Modify, and Execute Forms for valid combinations of the 
MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Assembler Language Macro Instructions    1–195 



TRECVFR 

Completion Information 

The TRECVFR macro instruction completes normally (or conditionally) when 
data is available at the endpoint, and has been moved into the storage area 
provided by the application program. The length of the storage area is updated 
to reflect the amount of data received with this request. A residual count is also 
returned which is set to the amount of internal buffer space for which no receive 
is pending.  

If the data returned to the application program is the beginning of a new 
datagram, the protocol address of the sender is returned if a storage area was 
provided. The corresponding lengths are updated to reflect the actual amount of 
data returned. If the data is the continuation of an old datagram, the lengths of 
these storage areas are set to zero.  

On return to the application program, TONOTEOM is indicated in the field if 
there is more data, and the current datagram must be received with multiple 
TRECVFR macro instructions. If end of message is indicated in the OPTCD field 
(that is, TONOTEOM not set), the last byte of the data received corresponds to 
the end of the datagram. 

TOMORE is indicated in the OPTCD field if more data is buffered for the 
endpoint. The data may be a continuation of the current datagram, or the 
beginning of the next datagram. If no data is buffered, TOMORE is not set in the 
TPLOPTCD field.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. TCTRUNC is set if the protocol address returned to the application 
program was truncated to fit in the storage area provided. The TPL return code 
field is set accordingly. No other information is returned.  

If the TRECVFR macro instruction completes abnormally, no data is moved into 
the storage area, and the OPTCD indicators described above are not set. The state 
of the endpoint is unchanged. The general return code in register 15, and 
recovery action code in register zero, indicate the nature of the failure. The TPL 
return code field may also contain a specific error code that identifies a particular 
error.  

1–196     Assembler API Programmer Reference 



TRECVFR 

Return Codes 

The following table lists the symbolic names for the TRECVFR return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation  

TROKAY TAOKAY TCOKAY TCTRUNC  

TRFAILED TAINTEG TEPROTO TEOVRFLO 

 TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TESTOP TETERM TEUNSUPO 
TEUNSUPF 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT TEBDADDR TEBDDATA 

 TAPROCED TEAMODE TESTATE TEREQOVR 
TEBUFOVR 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted data 
areas maintained within the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the process 
of closing.  

Assembler Language Macro Instructions    1–197 



TRECVFR 

Usage Information 

The TRECVFR macro instruction is used to receive a datagram that has arrived at 
an endpoint operating in connectionless mode. The protocol address of the 
sending transport user, protocol options associated with the datagram, and user 
data contained within the datagram itself are returned to the application 
program. The endpoint must be in the disabled (TSDSABLD) state when the 
TRECVFR macro instruction is issued.  

A datagram can span several TRECVFR macro instructions if the receiving 
storage area is not large enough to hold the entire amount of data. If the storage 
area is filled to capacity, but more data remains for the current datagram, 
NOTEOM is set in the TPL to indicate another TRECVFR macro instruction is 
required to receive the continuation of the datagram. This indication continues to 
be set until the end of the datagram is received, at which time EOM is indicated. 
The protocol address and any protocol options associated with the datagram are 
returned with the first segment of the datagram.  

If another datagram is available to be received, MORE is indicated at the 
completion of the TRECVFR macro instruction. Otherwise, NOMORE is 
indicated. Data from two different datagrams is never combined, even if both 
could fit within the storage area provided.  

The TPLOPTCD field of the TPL is used by the API data transfer routines to 
return indicators that can be tested by the application program. The indicators 
returned by the TRECVFR macro instruction correspond to the indicators set by 
the TSENDTO macro instruction. These indicators are located in the function-
specific option code field mapped by the TPL DSECT as TPLOPCD2. 

 TONOTEOM If set, corresponds to OPTCD=NOTEOM, and indicates that 
another TRECVFR macro instruction must be issued to receive 
the end of the datagram.  

If not set, corresponds to OPTCD=EOM, and indicates the last 
byte of data moved into the storage area corresponds to the end 
of the datagram. 

TOMORE If set, corresponds to OPTCD=MORE, and indicates that more 
data is buffered at the endpoint. The data is not necessarily part 
of the current datagram.  

If not set, corresponds to OPTCD=NOMORE, and indicates all 
of the data buffered at the endpoint was moved into the 
application program's storage area.  

1–198     Assembler API Programmer Reference 



TRECVFR 

The storage area provided by the application program can be a simple, 
contiguous segment of storage, or a set of non-contiguous segments indirectly 
addressed via a data vector. 

If the option is: 

■  OPTCD=DIRECT—The datagram is transferred into the storage area 
identified by the DABUF and DALEN operands. The length of the storage 
area is updated to reflect the actual amount of data transferred. 

■  OPTCD=INDIR—The DABUF and DALEN operands identify a storage area 
initialized with the addresses and lengths of non-contiguous storage 
segments into which the datagram is to be transferred. The length of the 
indirect data vector is updated to reflect the actual amount of data 
transferred.  

Each entry in an indirect data vector consists of a fullword address followed by a 
fullword length. If the length is zero, the entry is ignored. If the length is 
nonzero, the address must reference a valid storage area, and may be aligned on 
any boundary convenient for the application program. The length of the vector is 
used to determine the number of entries in the list. The sum of the lengths must 
not exceed the maximum interface data unit defined for the endpoint. 

Unlike most other macro instructions, multiple TRECVFR macro instructions can 
be issued without waiting for the first to complete. However, each macro 
instruction requires its own TPL. The maximum number that can be issued 
before one must complete is an API variable that can be modified by the 
TOPTION macro instruction. The default value is set when the API is configured. 
TRECVFR macro instructions are completed in the order in which they are 
issued.  

Data received with the TRECVFR macro instruction is buffered in the API 
address space before it is moved into the storage area provided by the 
application program. The total amount of receive buffering allocated for an 
endpoint is also an API option. 

The data received is application-dependent, and is not interpreted by the API or 
the transport provider. The maximum amount that can be received with a single 
TRECVFR request can be determined by issuing a TINFO macro instruction. 

Assembler Language Macro Instructions    1–199 



TREJECT 

TREJECT 
Reject a Connection Request—When a connect indication has been received at 
an endpoint with a TLISTEN macro instruction, the TREJECT macro instruction 
is used to reject the connection request. 
[ symbol ] TREJECT [ EP = endpoint_id ] 
                   [ ,SEQNO = sequence_number ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] 
                                [ ,ABORT | CLEAR ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E,[ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TREJECT macro instruction executes 

The value specified must be the endpoint identifier returned by the
TOPEN macro instruction when the endpoint was opened. An 
invalid or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

SEQNO = sequence_number  Which connect indication is rejected.  

The value specified must have been returned by a TLISTEN macro 
instruction. The transport provider uses this value to identify a 
connect indication pending for this endpoint, which has not yet 
been accepted or rejected.  

Default: Zero (most likely an invalid sequence number). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to 
indicate that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL 
is generated. The suffix contains ALET address extensions that can 
be specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG 
otherwise. 

1–200     Assembler API Programmer Reference 



TREJECT 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TREJECT macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction completes. A TCHECK macro 
instruction should not be executed since check processing is 
automatically performed by the API.  

 OPTCD=ASYNC the request executes in asynchronous mode, and 
control is returned immediately after scheduling the TREJECT 
request. The application program is responsible for issuing the 
TCHECK macro instruction.  

Default: SYNC (synchronous mode). 

OPTCD = ABORT | CLEAR Action that the transport provider should take when the 
application program issues a TREJECT macro instruction at an 
endpoint for which a disconnect indication is already pending. 

OPTCD=ABORT the request completes abnormally, and the 
application program must clear the pending disconnect indication 
with a TCLEAR macro instruction. 

OPTCD=CLEAR the TREJECT request clears the disconnect 
indication, and the macro instruction completes normally (or 
conditionally) if no other errors occur. 

Default: CLEAR (clear pending disconnect indication).  

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API 
when the TREJECT macro instruction associated with this TPL 
completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally 
used to store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode 
is specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the 
ECB operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand. 

Default: INTERNAL (internal ECB).  

Assembler Language Macro Instructions    1–201 



TREJECT 

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TREJECT macro 
instruction associated with this TPL completes. 

 The TPL exit routine is scheduled only if asynchronous mode has 
been specified. In synchronous mode, any address specified with 
the EXIT operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB 
operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Atandard, list, generate, modify, or execute form of the TREJECT 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

Completion Information 

The TREJECT macro instruction completes normally when the disconnect 
protocol data unit has been scheduled by the transport provider for transmission 
to the calling transport user, and the pending connect indication is removed from 
the queue. The state of the endpoint is changed from connect-indication-pending 
(TSINCONN) to enabled (TSENABLD) if no other indications are pending. 
Otherwise, the state of the endpoint is unchanged.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

If the TREJECT macro instruction completes abnormally, no disconnect protocol 
data unit is scheduled for transmission to the calling transport user, and the 
connect indication remains pending. The state of the endpoint is unchanged. The 
general return code in register 15, and recovery action code in register zero, 
indicate the nature of the failure. The TPL return code field may also contain a 
specific error code that identifies a particular error.  

1–202     Assembler API Programmer Reference 



TREJECT 

Return Codes  

The following table lists the symbolic names for the TREJECT return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation  

TROKAY TAOKAY TCOKAY 

   TAINTEG TEPROTO TEDISCON
  

 TAENVIRO TESYSERR TESUBSYS  TEDRAIN  
TESTOP  TETERM TEUNSUPO 
TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB  
TEBDEXIT TEBDDATA TEBDSQNO  

 TAPROCED TEAMODE TESTATE TEINCMPL  

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address space.

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Assembler Language Macro Instructions    1–203 



TREJECT 

Usage Information 

The TREJECT macro instruction is used to refuse a connection request received 
from a remote transport user. 

The TREJECT macro instruction is issued in place of a TACCEPT macro 
instruction to reject a pending connect indication, and to remove it from the 
queue. The sequence number returned with a TLISTEN macro instruction must 
be provided to designate which connect indication is being rejected. The 
endpoint must be in the connect-indication-pending (TSINCONN) state, and 
remains in this state if more connect indications are pending. Otherwise, the 
endpoint is returned to the enabled (TSENABLD) state, and remains enabled to 
receive more connect indications.  

The TREJECT macro instruction is usually executed at endpoints operating in 
connection mode. However, if a TLISTEN macro instruction has been executed at 
an endpoint operating in connectionless mode, the TREJECT macro instruction 
may be issued to reject a simulated connect indication. The connect indication 
was generated as the result of receiving a datagram at the endpoint, and the 
TREJECT macro instruction causes the indication to be removed, and the 
associated datagram to be discarded. No association is established, and another 
TLISTEN macro instruction should be issued to receive the next indication when 
a datagram arrives. 

1–204     Assembler API Programmer Reference 



TRELACK 

TRELACK 
Acknowledge Orderly Release Indication—The TRELACK macro instruction is 
used to acknowledge an indication of an orderly release request generated at an 
endpoint normally operating in connection-mode. The application program can 
no longer receive data, but is allowed to continue sending data until the 
connection is fully released by issuing a TRELEASE macro instruction.  
[ symbol ] TRELACK [ EP = endpoint_id ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                   [ ,SYNC | ASYNC ] 
                   [ ,BLOCK | NOBLOCK ] 
                   [ ,ABORT | CLEAR ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TRELACK macro instruction executes.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that 
a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

Assembler Language Macro Instructions    1–205 



TRELACK 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TRELACK macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode and control is 
not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode and 
control is returned immediately after scheduling the TRELACK request. 
The application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode).  

OPTCD = ABORT | CLEAR Action that the transport provider should take when the application 
program issues a TRELACK macro instruction at an endpoint for which 
a disconnect indication is already pending.  

OPTCD=ABORT the request completes abnormally, and the application 
program must clear the pending disconnect indication with a TCLEAR 
macro instruction. 

OPTCD=CLEAR the TRELACK request clears the disconnect indication, 
and the macro instruction completes normally (or conditionally) if no 
other errors occur. 

Default: CLEAR (clear pending disconnect indication) . 

  

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when 
the TRELACK macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used to 
store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

1–206     Assembler API Programmer Reference 



TRELACK 

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TRELACK macro 
associated with this TPL completes.  

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine).  

MF= ( I | L | G | M | E,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TRELACK macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TRELACK macro instruction completes normally when an orderly release 
indication is received. 

■  If the state of the endpoint was connected (TSCONNCT), the state is changed 
to release-indication-pending (TSINRLSE) 

■  If the state of the endpoint was not connected, the state must have been 
release-in-progress (TSOURLSE), and is changed to disabled (TSDSABLD) or 
enabled (TSENABLD), depending on the operating mode of the transport 
user 

The connection is not released until the endpoint returns to the disabled or 
enabled state.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned.  

Assembler Language Macro Instructions    1–207 



TRELACK 

If the TRELACK macro instruction completes abnormally, the release indication 
(if any) remains queued. The state of the endpoint is unchanged. The general 
return code in register 15, and recovery action code in register zero, indicate the 
nature of the failure. The TPL return code field may also contain a specific error 
code that identifies a particular error.  

Return Codes 

 The following table lists the symbolic names for the TRELACK return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY 

TRFAILED TAINTEG TEPROTO TEDISCON 

 TAENVRO TESYSERR  TESUBSYS  TEDRAIN 
TESTOP TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT 

 TAPROCED TEAMODE  TESTATE TEINCMPL 
TENORLSE 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address 
space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

1–208     Assembler API Programmer Reference 



TRELACK 

Usage Information 

The TRELACK macro instruction is used to acknowledge an orderly release 
indication that was generated at an endpoint. It is used in conjunction with the 
TRELEASE macro instruction to terminate a connection without loss of data.  

An orderly release indication is generated by an orderly release protocol data 
unit arriving at an endpoint. When all of the data buffered at the endpoint is 
received by the application program, the release indication is generated. The 
application must issue a TRELACK macro instruction to acknowledge the 
indication. 

■  If the release was initiated by the remote transport, the application may 
continue sending data until a TRELEASE macro instruction is executed 

■  If the release was initiated by the application program, acknowledgment of 
the release indication causes the connection to be terminated  

The orderly release procedure is primarily intended for connection-mode 
operation. However, if supported by the transport provider, associations 
established in connectionless mode can be terminated using the orderly release 
procedure. If the application program issues a TRELEASE macro instruction, a 
release indication is generated as soon as all inbound data buffered at the 
endpoint has been received. The orderly release service is simulated by the API, 
and is transparent to the transport provider. 

Assembler Language Macro Instructions    1–209 



TRELEASE 

TRELEASE 
Initiate Orderly Release—The TRELEASE macro instruction is used to initiate or 
complete the orderly release of a connection. This macro instruction provides a 
graceful termination of a connection and is not immediate as is the abortive 
disconnect initiated with the TDISCONN macro instruction. Any data previously 
sent with a TSEND macro instruction is delivered.  
[ symbol ] TRELEASE [ EP = endpoint_id ] 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                    [ ,SYNC | ASYNC ] ) ] 
                    [ ,ECB = INTERNAL | event_control_block_addr ]  
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TRELEASE macro instruction executes. 

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An 
invalid or corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified).  

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate 
that a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

1–210     Assembler API Programmer Reference 



TRELEASE 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TRELEASE macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction is complete. A TCHECK macro 
instruction should not be executed since check processing is 
automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TRELEASE request.
The application program is responsible for issuing the TCHECK 
macro instruction.  

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API 
when the TRELEASE macro instruction associated with this TPL 
completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used 
to store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TRELEASE macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode has 
been specified. In synchronous mode, any address specified with the 
EXIT operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

Assembler Language Macro Instructions    1–211 



TRELEASE 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TRELEASE 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TRELEASE macro instruction completes normally when the orderly release 
protocol data unit is scheduled for transmission to the connected transport user. 

■  If the state of the endpoint was connected (TSCONNCT), the state is changed 
to release-in-process (TSOURLSE) 

■  If the state of the endpoint was not connected, the state must have been 
release-indication-pending (TSINRLSE), and is changed to disabled 
(TSDSABLD) or enabled (TSENABLD), depending on the operating mode of 
the application program 

The connection is not released until the endpoint returns to the disabled or 
enabled state.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned.  

If the TRELEASE macro instruction completes abnormally, no orderly release 
protocol data unit is scheduled for transmission. The state of the endpoint is 
unchanged. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field may 
also contain a specific error code that identifies a particular error.  

1–212     Assembler API Programmer Reference 



TRELEASE 

Return Codes 

The following table lists the symbolic names for the TRELEASE return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General Return 
Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY 

TRFAILED TAINTEG TEPROTO TEDISCON 

 TAENVIRO TESYSERR  TESUBSYS  TEDRAIN 
TESTOP TETERM TEUNSUPF 

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT 

 TAPROCED TEAMODE TESTATE TEINCMPL  

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas 
maintained within the application program's 
address space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

Assembler Language Macro Instructions    1–213 



TRELEASE 

Usage Information 

The TRELEASE macro instruction is used to initiate or complete the orderly 
release of a connection. It differs from the TDISCONN macro instruction in that 
it is not immediate, and the connection is not released until both transport users 
agree to do so. Any unsent data buffered at the endpoint is forwarded to the peer 
transport user. The TRELEASE macro instruction does not complete until all 
pending TSEND macro instructions complete. 

The orderly release procedure requires both transport users to request orderly 
release before the connection is terminated. If the application program initiates 
orderly release by executing a TRELEASE macro instruction, all buffered data is 
forwarded to the peer transport user, followed by an orderly release request. The 
application program should then continue receiving data until an orderly release 
indication is received. Any attempt to send data through an endpoint in the 
release-in-progress state completes abnormally. 

If the peer transport user initiates an orderly release, a release indication is 
generated and presented to the application program. The application program 
should cease receiving data, and execute a TRELACK macro instruction to 
acknowledge the release indication. The application program can continue 
sending data until transmission is complete, and then a TRELEASE macro 
instruction should be issued to complete termination of the connection. 

Orderly release may not be supported by the transport provider, and should be 
requested when the endpoint is opened (see TOPEN). If not requested in 
advance, the TINFO macro instruction should be issued to determine if orderly 
release is supported. If not, the application program should use a session 
protocol, or some other method to terminate the session with the peer transport 
user, to avoid losing data that may be discarded by an abortive disconnect.  

The TRELEASE macro instruction is generally executed at endpoints operating in 
connection mode. If an association has been established for an endpoint 
operating in connectionless mode, the API simulates the orderly release 
procedure, and generates a release indication after all data has been sent to the 
peer transport user.  

Note: There is no guarantee that the data was received. This procedure is 
transparent to the transport provider. 

1–214     Assembler API Programmer Reference 



TRETRACT 

TRETRACT 
Retract Pending Listen Request—The TRETRACT macro instruction is used to 
retract a pending listen initiated with the TLISTEN macro instruction. Any 
outstanding listen is forced to complete abnormally, and the state of the endpoint 
is as if the TLISTEN macro instruction had not been executed at all.  
[ symbol ] TRETRACT [ EP = endpoint_id ] 
                    [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                    [ ,SYNC | ASYNC ] ) ] 
                    [ ,ECB = INTERNAL | event_control_block_addr ] 
                    [ ,EXIT = tpl_exit_routine_address ] 
                    [ ,MF = ( I | L | G | M | E , [ tpl_address ] ) ]  

EP = endpoint_id  Endpoint at which the TRETRACT macro instruction executes.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  

Default: Zero (no endpoint specified). 

OPTCD = SHORT | LONG | 
EXTEND 

Fformat attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that a 
subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be specified
by other request parameters. 

Default: SHORT if MF=I, LONG otherwise.  

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TRETRACT macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be executed 
since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TRETRACT request. The 
application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode). 

Assembler Language Macro Instructions    1–215 



TRETRACT 

ECB = INTERNAL | 
Event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when the 
TRETRACT macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword boundary. If 
ECB=INTERNAL is coded, the TPL field normally used to store the ECB 
address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if ECB=INTERNAL 
was coded, and any value specified with the ECB operand is overwritten by 
the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TRETRACT macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode was specified. 
In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TRETRACT macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to 
use for this request. If no MF operand is specified, the standard form is used. 

See List, Generate, Modify, and Execute Forms for valid combinations of the 
MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

1–216     Assembler API Programmer Reference 



TRETRACT 

Completion Information 

The TRETRACT macro instruction completes normally when a TLISTEN request, 
which was pending at the endpoint, is prematurely terminated. The pending 
TLISTEN request completes abnormally, and the specific error code is set to 
TERETRCT to indicate that a TRETRACT macro instruction forced its 
completion. The state of the endpoint is unchanged, and is as if the TLISTEN 
macro instruction had not been executed. If no connect indications were pending 
at the time the listen was retracted, the endpoint is left in the enabled 
(TSENABLD) state. Otherwise, it is left in the connect-indication-pending 
(TSINCONN) state.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

If no TLISTEN request was pending, perhaps because it had already completed, 
the TRETRACT macro instruction completes abnormally. The general return 
code in register 15, and the recovery action code in register zero, indicate the 
nature of the failure. The TPL return code field can contain a specific error code 
that identifies the particular error.  

Return Codes 

The following table lists the symbolic names for the TRETRACT return codes. 
The values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY  

TRFAILED TAEXCPTN  TENOLSTN 

 TAENVIRO TESYSERR  TESUBSYS TEDRAIN
  
TESTOP TETERM  

 TAFORMAT TEBDFNCD  TEBDOPCD TEBDECB 
TEBDEXIT  

 TAPROCED TEAMODE TESTATE TEINCMPL 

Assembler Language Macro Instructions    1–217 



TRETRACT 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas 
maintained within the application program's 
address space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

Usage Information 

The TRETRACT macro instruction can be used to retract a pending TLISTEN 
macro instruction by forcing it to complete abnormally. Once the TLISTEN 
request completes, the protocol address can be unbound from the endpoint. Until 
then, the endpoint can continue receiving connect indications. TRETRACT 
provides an alternative to closing the endpoint in order to prevent it from 
listening for connect indications. If any connect indications are pending at the 
endpoint, they remain pending, and must be accepted or rejected before the 
protocol address may be unbound.  

There is no guarantee that the TLISTEN request can be retracted before it would 
be completed normally by an incoming connection request. If this happens, the 
TRETRACT function does not find any record of a pending TLISTEN request, 
and completes the TRETRACT macro instruction abnormally. If the TRETRACT 
macro instruction was issued too late to prevent TLISTEN from completing 
normally, the pending connect indication must be processed as usual by 
accepting or rejecting it with the appropriate macro instruction. 

1–218     Assembler API Programmer Reference 



TSEND 

TSEND 
Send Normal or Expedited Data on a Connection—The TSEND macro 
instruction is used to send normal or expedited data to the peer transport user 
connected to an endpoint. TSEND is normally used to send data on an endpoint 
operating in connection mode, but when supported by the transport provider, 
datagrams may be sent on an endpoint operating in connectionless-mode if the 
application program has established an association with the transport user.  
[ symbol ] TSEND [ EP = endpoint_id ] 
                 [ ,DALEN = user_data_length ] 
                 [ ,DABUF = user_data_address ] 
                 [ ,DAALET = user_address_alet ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,MORE | NOMORE ] 
                              [ ,NORMAL | EXPEDITE ] 
                              [ ,EOM | NOTEOM ] 
                              [ ,DIRECT | INDIR ] 
                              [ ,BLOCK | NOBLOCK ] 
                              [ ,MBUF | NOMBUF ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = tpl_exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E,[ tpl_address ] ) ]  

EP = endpoint_id  Endpoint at which the TSEND macro instruction executes.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  

Default: Zero (no endpoint specified). 

DALEN = user_data_length Length (in bytes) of a data storage area or an indirect data vector identified 
by the DABUF operand. 

If the data mode is direct, the amount of user data to be sent is equal to the 
length of the storage area.  

If the data mode is indirect, the total amount of user data is equal to the sum 
of all data segments identified by the data vector. 

In either case, the total amount of user data must not exceed the limit 
supported by the transport provider. This limit can be obtained with the 
TINFO macro instruction. A length of zero indicates there is no user data to 
be sent.  

Default: Zero (no user data). 

Assembler Language Macro Instructions    1–219 



TSEND 

DABUF = user_data_address Address of user data to be sent to the connected (or associated) transport 
user. 

If the data mode is direct, the value specified is the address of the storage 
area containing the user data. 

If the data mode is indirect, the value specified must be the address of an 
indirect data vector, and each element of the vector must have been 
initialized to point to an individual segment of user data. 

If no data is available, the length as indicated by the DALEN operand 
should be zero. The content of all user data is application-dependent, and is 
not interpreted by the API or the transport provider. The storage area can be 
aligned on any boundary convenient for the application program.  

Default: Zero (no user data storage area). 

DAALET = user_address_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

 

The DAALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller. The DAALET parameter can be used only 
if OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that a 
subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be specified
by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

1–220     Assembler API Programmer Reference 



TSEND 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TSEND macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be executed 
since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TSEND request. The application 
program is responsible for issuing the TCHECK macro instruction.  

Default: SYNC (synchronous mode). 

OPTCD = MORE | NOMORE Indicates whether the application program intends to immediately send 
more data, or intends to pause momentarily until it has more data to send.  

OPTCD=MORE the application program expects to immediately issue 
another TSEND macro instruction at the same endpoint. 

OPTCD=NOMORE the application program has no more data to send, but 
intends to leave the connection established, and may resume sending data 
later. 

The interpretation of this option code by the transport provider is protocol 
dependent. The intent is that the transport provider uses this information to 
augment its packet algorithm, and deduce when unsent data must be 
forwarded on the connection. Not all connection-mode transport providers 
are required to interpret this option code, but all are required to accept it. If 
the TSEND macro instruction is executed in synchronous mode, 
OPTCD=MORE is ignored. 

No implication is drawn about message boundaries by the indication of 
OPTCD=NOMORE. If the underlying transport protocol can preserve logical
boundaries within the data stream, then such boundaries should be 
indicated with OPTCD=EOM.  

Default: NOMORE (send data immediately).  

Assembler Language Macro Instructions    1–221 



TSEND 

OPTCD = NORMAL | 
EXPEDITE 

Indicates whether the user data should be sent as normal or expedited data. 

OPTCD=NORMAL the data associated with this request is sent as normal 
data.  

OPTCD=EXPEDITE the data is to be sent as expedited data. 

The distinction between normal and expedited data is left to the 
interpretation of the transport provider.  

Default: NORMAL (send data as normal data). 

OPTCD = EOM | NOTEOM Indicates whether the data associated with this request is a complete 
message, or is continued with one or more subsequent macro instructions. 

OPTCD=EOM the last byte of data corresponds to the end of the message or 
datagram. 

OPTCD=NOTEOM the end of the message or datagram does not occur with 
this request, and is continued with at least one more TSEND or TSENDTO 
macro instruction. 

Although all transport providers supplying connection-mode service are 
required to accept this option code, only those that can preserve logical 
boundaries in the data stream are required to interpret it. Generally, these 
providers support the concept of a transport service data unit to delineate 
such boundaries. 

 

 If the transport provider does not preserve logical boundaries, this 
option code is ignored. The setting of this option code implies 
nothing about how the user data is broken down into packets by the 
underlying protocol for sending to the peer transport user. 

 Transport providers supplying connectionless-mode service are not 
required to accept this option code. Those that do interpret 
OPTCD=NOTEOM to mean the datagram is continued with another 
TSEND macro instruction. In this case, a datagram is synonymous 
with TSDU, except that implementation is purely a local concern.  

Default: EOM (end of message or datagram). 

1–222     Assembler API Programmer Reference 



TSEND 

OPTCD = DIRECT | INDIR Format of the user data parameter. 

OPTCD=DIRECT the DABUF and DALEN operands identify a 
storage area into which data should be received directly. 

OPTCD=INDIR the storage area identified by these operands 
contains an indirect data vector. An indirect data vector consists of a 
list of address-length pairs, with each element identifying a separate 
segment of non-contiguous storage. In this case, DABUF is the 
address of the first element in the list, and DALEN is the total length 
of the list.  

The length of the vector must be a multiple of eight, and the total 
amount of data that can be received is the sum of the lengths of each 
data segment. 

Default: DIRECT (send directly from data area).  

OPTCD = MBUF | NOMBUF  DABUF parameter is the address of a TCPaccess MBUF, rather than 
a data buffer or indirect buffer list. 

OPTCD=MBUF the DALEN parameter is ignored and the length of 
the data is determined from fields within the MBUF structure. 

OPTCD=NOMBUF the DABUF parameter is processed normally. 

Note: OPTCD=MBUF is intended only for applications internal to 
TCPaccess and is used to improve performance. 

Default: NOMBUF. 

Assembler Language Macro Instructions    1–223 



TSEND 

OPTCD = BLOCK | NOBLOCK OPTCD=NOBLOCK may be used with endpoints opened with 
MODE=SOCKETS.  

This option is ignored for TLI-mode endpoints, which always block 
until the sent data is acknowledged. Normally, socket-mode 
endpoints do not block. However, if the amount of send data 
exceeds the amount of available buffer space, the TSEND request 
blocks by default until buffer space becomes available.  

OPTCD=NOBLOCK can be used in this case to prevent the endpoint 
from becoming blocked. When this occurs, only the amount of data 
for which there is space is sent.  

Buffer space is limited by configuration parameters and TOPTION 
negotiation. 

If the option is OPTCD=NOBLOCK, then the TSEND sends either 
the amount of available space in the send buffer or the amount of 
data that was requested by the TSEND, whichever is less. 

Default: BLOCK. 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API 
when the TSEND macro instruction associated with this TPL 
completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used 
to store the ECB address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT 
operand.  

Default: INTERNAL (internal ECB). 

1–224     Assembler API Programmer Reference 



TSEND 

EXIT = tpl_exit_routine_address Address of an exit routine to schedule when the TSEND macro 
instruction associated with this TPL completes.  

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TSEND 
macro instruction.  

The second sublist operand, tpl_address, specifies the address of the 
TPL to use for this request. If no MF operand is specified, the 
standard form is used.  

See List, Generate, Modify, and Execute Forms for valid 
combinations of the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TSEND macro instruction completes normally when the data from the 
application program’s storage area is moved, and forwarded to the transport 
provider for sending to the connected (or associated) transport user. For 
MODE=SOCKETS, the count of the data bytes sent is returned in the 
TPLCOUNT field. 

Normal completion of the TSEND macro implies nothing in regard to when the 
data is sent to the peer transport user, and should be interpreted to mean that the 
transport provider has taken custody of the user data, and the storage area 
provided by the application program can be reused by another TSEND macro 
instruction. If OPTCD=NOTEOM was indicated, no assumption should be made 
(unless the endpoint is operating in connectionless mode) about previous 
fragments of the current TSDU not being sent. If OPTCD=NOMORE was 
indicated, the transport provider is normally coerced into sending any buffered 
data, but this may not occur synchronously with the completion of the macro 
instruction.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

Assembler Language Macro Instructions    1–225 



TSEND 

If the TSEND macro instruction completes abnormally, no user data is sent to the 
peer transport user. The state of the endpoint is unchanged. The general return 
code in register 15, and recovery action code in register zero, indicate the nature 
of the failure. The TPL return code field may also contain a specific error code 
that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TSEND return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 

  

General Return 
Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY 

TRFAILED TAEXCPTN TENOBLOK 

 TAINTEG TEPROTO TEDISCON 

 TAENVIRO TESYSERR TESUBSYS TEDRAIN 
TESTOP TETERM TEUNSUPF 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB 
TEBDEXIT TEBDDATA 

 TAPROCED TEAMODE TESTATE TEREQOVR 
TEBUFOVR  

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

1–226     Assembler API Programmer Reference 



TSEND 

General Return 
Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address 
space. 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

Usage Information 

The TSEND macro instruction is used to send normal or expedited data through 
an endpoint. The data may be part of a byte stream or message stream being sent 
over a connection, or part (or all) of a datagram to be sent via an association to a 
peer transport user.  

■  If the transport service type is a connection-mode byte stream, data is moved 
from the application program's storage areas to storage areas maintained by 
the transport provider, broken down into packets, and sent to the connected 
transport user. Logical boundaries are not preserved in the data stream. The 
data is delivered to the peer transport user in the precise order in which it 
was sent, but may be fragmented in an entirely different manner. The EOM 
and NOTEOM indications set in the TPL are ignored. 

■  If the transport service type is a connection-mode message stream, data is 
processed in a similar manner. However, the EOM and NOTEOM 
indications set in the TPL are used to delineate the boundaries of transport 
service data units. When the data is delivered to the peer transport user, the 
continuation or end of a TSDU is similarly indicated. The concept of a TSDU 
implies nothing about how the underlying protocol creates data packets for 
transmission. The maximum size of a TSDU can be determined by issuing a 
TINFO macro instruction.  

Transport providers operating in connectionless mode are not required to accept 
or interpret the EOM and NOTEOM indications. If interpreted, the concept of a 
message (or TSDU) is synonymous with a datagram, and the significance of the 
EOM and NOTEOM indications is only a local phenomenon. The intent is to 
provide a mechanism for the application program to send a large message as 
multiple, noncontiguous fragments. If the transport provider supports this 
option code, it is required to buffer the fragments and send the message as a 
single datagram.  

Assembler Language Macro Instructions    1–227 



TSEND 

Data is not necessarily broken down into packets and sent each time a TSEND 
macro instruction is issued, or when a message boundary is indicated. In fact, the 
transport provider may intentionally delay sending data as the result of 
performance optimization or congestion avoidance algorithms. Generally, a 
continual flow of data generated by the sender causes data to be forwarded. 
However, in interactive applications, the transport provider may need to be 
coerced into forwarding any buffered data. 

The MORE and NOMORE indications control this process.  

■  If MORE is indicated, the application intends to immediately send more 
data, and the transport provider is free to delay sending any data associated 
with the current request 

■  If NOMORE is indicated, the application has no more data to send, and all 
buffered data should be forwarded to the peer transport user  

For example, if TCP is the underlying protocol, the NOMORE indication would 
cause the PUSH flag to be set.  

NOMORE is ignored when the synchronization mode is ASYNC.  

If the transport provider supports expedited data, the TSEND macro instruction 
is also used to send it. The NORMAL and EXPEDITE indicators are used to 
distinguish normal and expedited data. The resulting actions of the transport 
provider are protocol-dependent. Some transport providers support the concept 
of an expedited transport service data unit, and others support the concept of 
expedited data within a data stream without logical boundaries. The EOM and 
NOTEOM indications apply to an expedited TSDU in the same way they apply 
to a normal TSDU. The form of expedited data supported by the transport 
provider, and the maximum size of an ETSDU, can also be determined with the 
TINFO macro instruction.  

The OPTCD field of the TPL is used by the application program to set indicators 
that can be tested by the API data transfer routines. The indicators set by the 
TSEND macro instruction correspond to the indicators returned by the TRECV 
macro instruction. These indicators are located in the function-specific option 
code field mapped by the TPL DSECT as TPLOPCD2.  

1–228     Assembler API Programmer Reference 



TSEND 

These bits are used by the TSEND macro instruction: 

■  If set, the TONOTEOM bit corresponds to OPTCD=NOTEOM, and indicates 
that another macro instruction is issued to send the continuation of the TSDU 
or datagram 

■  If not set, the TONOTEOM corresponds to OPTCD=EOM, and indicates the 
last byte of data moved from the storage area corresponds to the end of the 
TSDU or datagram  

■  If set, the TOMORE bit corresponds to OPTCD=MORE, and indicates that 
the application program intends to immediately issue another TSEND macro 
instruction to send more data. The data is not necessarily part of the current 
message 

■  If not set, the TOMORE bit corresponds to OPTCD=NOMORE, and indicates 
that the transport provider should forward all data buffered at the endpoint 
to the peer transport user  

■  If set, the TOEXPDTE bit corresponds to OPTCD=EXPEDITE, and indicates 
that the data contained in the storage area should be sent as expedited data 

■  If not set, the TOEXPDTE bit corresponds to OPTCD=NORMAL, and 
indicates that the data should be sent as normal data. If the transport 
provider supports the concept of an expedited transport service data unit 
(ETSDU), TONOTEOM is used to mark the continuation of the ETSDU 

User data may be provided in a simple, contiguous segment of storage, or in a set 
of non-contiguous segments indirectly addressed via a data vector. 

The storage area provided by the application program can be a simple, 
contiguous segment of storage, or a set of non-contiguous segments indirectly 
addressed via a data vector. 

If the option is: 

■  OPTCD=DIRECT user data must be contained in the storage area identified 
by the DABUF and DALEN operands.  

■  OPTCD=INDIR the DABUF and DALEN operands identify a storage area 
initialized with the addresses and lengths of non-contiguous storage 
segments containing the user data. The total amount of data to be transferred 
is the sum of the lengths of the individual segments. The total length must 
not exceed the maximum size of the interface data unit supported by the 
transport provider, or the maximum size of a transport service data unit. 
Upon completion of the TSEND request, the length of the indirect data 
vector is updated to reflect the actual amount of data transferred. 

Assembler Language Macro Instructions    1–229 



TSEND 

Each entry in an indirect data vector consists of a fullword address followed by a 
fullword length. If the length is zero, the entry is ignored. If the length is 
nonzero, the address must reference a valid storage area containing user data, 
and can be aligned on any boundary convenient for the application program. The 
length of the vector is used to determine the number of entries in the list.  

Unlike most other macro instructions, multiple TSEND macro instructions can be 
issued without waiting for the first to complete. However, each macro 
instruction requires its own TPL. The maximum number that can be issued 
before one must complete is the API variable that can be modified by the 
TOPTION macro instruction. The default value is set when the API is installed. 
TSEND macro instructions are completed in the order in which they are issued.  

Data sent with the TSEND macro instruction is buffered in the API address space 
before it is forwarded to the transport provider. The total amount of send 
buffering allocated for an endpoint is also the API option. 

User data is application-dependent, and is not interpreted by the API or the 
transport provider. The maximum amount that can be sent with a single TSEND 
request can be determined by issuing a TINFO macro instruction. 

Data Transfer Modes 

TSEND handles data transfer according to the transfer mode specified on the 
TOPEN macro. TLI or SOCKET may be specified; TLI is the default.  

TLI Mode 

TLI is the standard data transfer mode for TCPaccess. For TLI mode, specify 
MODE=TLI on the TOPEN macro, or allow it to default.  

■  A TSEND request in TLI mode completes when all of the data is 
acknowledged by the remote TCP. The amount of data that can be sent is 
subject to the limits set by the LSEND and LTSND values. 

■  A TLI mode TSEND sends either all of the data, or none of it. 

■  Data contained in the application program’s storage area is moved into the 
API address space when the TSEND macro instruction is accepted. 
Therefore, if the TSEND macro instruction is executed in asynchronous 
mode, the application program can reuse the storage area after the macro 
instruction completes but before the request is completed. In fact, the storage 
area may be used to send more data as long as an inactive TPL is available.  

■  TPLCOUNT is cleared to zero. 

1–230     Assembler API Programmer Reference 



TSEND 

Socket Mode 

For socket mode, specify MODE=SOCKET on the TOPEN macro. 

■  A TSEND request in socket mode completes when all of the data that will be 
sent is passed to the local transport provider (for example, TCP or UDP). 

■  The amount of data that is actually sent for TSEND depends on whether 
OPTCD=BLOCK or OPTCD=NOBLOCK is used. In either case, the amount 
of sent data is returned in the TPLCOUNT field of the TPL. 

Note: OPTCD=BLOCK | NOBLOCK applies only to MODE=SOCKETS 
endpoints. 

■  OPTCD=BLOCK: All of the data in the send request is sent. 

■  OPTCD=NOBLOCK: All, some, or none of the data may be sent. The amount 
of data that is actually sent depends on the space available in the current 
send buffer. 

■  Data contained in the application program’s storage is moved into the API 
address space when it is scheduled for transmission. Therefore, if the TSEND 
macro instruction is issued in asynchronous mode, the application cannot 
reuse the storage area until the TSEND request completes. 

Assembler Language Macro Instructions    1–231 



TSENDTO 

TSENDTO 
Send a Datagram—The TSENDTO macro instruction is used to send datagrams 
to a remote transport user through an endpoint operating in connectionless-
mode. The user data, the remote protocol address of the destination, and any 
options associated with the datagram are provided by the application program.  
[ symbol ] TSENDTO [ EP = endpoint_id ] 
                   [ ,ADLEN = protocol_address_length ] 
                   [ ,ADBUF = protocol_address_address ] 
                   [ ,ADALET = protocol_address_alet ] 
                   [ ,DALEN = user_data_length ] 
                   [ ,DABUF = user_data_address ] 
                   [ ,DAALET = user_data_alet ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] 
                                [ ,DIRECT | INDIR ] 
                                [ ,MBUF | NOMBUF ]  
                                [ ,BLOCK | NOBLOCK ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E,[ tpl_address ] ) ] 

EP = endpoint_id  Specifies the endpoint at which the TSENDTO macro instruction executes.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  

Default: Zero (no endpoint specified). 

ADLEN = 
protocol_address_length 

Indicates the length (in bytes) of the protocol address contained in the storage 
area identified by the ADBUF operand. 

A length of zero is invalid, and causes the request to be abnormally 
completed.  

Default: Zero (no protocol address).  

ADBUF = 
protocol_address_address 

Address of a storage area containing the protocol address of the destination 
transport user that will receive the datagram.  

The length of the protocol address is designated by the ADLEN operand. The 
protocol address can be aligned on any boundary convenient for the 
application program.  

Default: Zero (no protocol address storage area). 

1–232     Assembler API Programmer Reference 



TSENDTO 

ADALET = 
protocol_address_alet 

Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the ADBUF parameter.  

The ADALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller. The ADALET parameter can only be used if 
OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

DALEN = user_data_length Length (in bytes) of a data storage area or an indirect data vector identified by
the DABUF operand. 

If the data mode is direct, the amount of user data sent is equal to the length 
of the storage area.  

If the data mode is indirect, the total amount of user data is equal to the sum 
of all data segments identified by the data vector. 

In either case, the total amount of user data must not exceed the limit 
supported by the transport provider. This limit can be obtained with the 
TINFO macro instruction. A length of zero indicates there is no user data to 
be sent.  

Default: Zero (no user data).  

DABUF = user_data_address Address of user data to be sent to the specified transport user. 

If the data mode is direct, the value specified is the address of the storage area
containing the user data. 

If the data mode is indirect, the value specified must be the address of an 
indirect data vector, and each element of the vector must have been initialized
to point to an individual segment of user data. 

If no data is available, the length as indicated by the DALEN operand should 
be zero. The content of all user data is application-dependent, and is not 
interpreted by the API or the transport provider. The storage area can be 
aligned on any boundary convenient for the application program.  

Default: Zero (no user data storage area).  

Assembler Language Macro Instructions    1–233 



TSENDTO 

DAALET = user_data_alet Access List Entry Token (ALET) used in access register (AR) mode when 
referencing the storage specified by the DABUF parameter.  

The DAALET value must be an ALET contained in the Dispatchable Unit 
Access List (DUAL) of the caller. The DAALET parameter can only be used if 
OPTCD=EXTEND is also specified. 

Default: Zero (the storage is contained in the address space of the caller). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier is used to indicate that a 
subset of the TPL has been generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be specified 
by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TSENDTO macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction is 
complete. A TCHECK macro instruction should not be executed since check 
processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TSENDTO request. The application 
program is responsible for issuing the TCHECK macro instruction.  

Default: SYNC (synchronous mode).  

1–234     Assembler API Programmer Reference 



TSENDTO 

OPTCD = DIRECT | INDIR Format of the user data parameter. 

OPTCD=DIRECT the DABUF and DALEN operands identify a storage area 
into which data should be received directly. 

OPTCD=INDIR the storage area identified by these operands contains an 
indirect data vector. 

An indirect data vector consists of a list of address-length pairs, with each 
element identifying a separate segment of non-contiguous storage. In this 
case, DABUF is the address of the first element in the list, and DALEN is the 
total length of the list. The length of the vector must be a multiple of eight, 
and the total amount of data that can be received is the sum of the lengths of 
each data segment. 

Default: DIRECT (send directly from data area). 

OPTCD = MBUF | NOMBUF  DABUF parameter is the address of a TCPaccess MBUF, rather than a data 
buffer or indirect buffer list. 

OPTCD=MBUF the DALEN parameter is ignored and the length of the data is
determined from fields within the MBUF structure. 

Note: OPTCD=MBUF is intended only for applications internal to TCPaccess 
and is used to improve performance. 

OPTCD=NOMBUF the DABUF parameter is processed normally. 

Default: NOMBUF. 

OPTCD = BLOCK | 
NOBLOCK 

OPTCD=NOBLOCK may be used with endpoints opened with 
MODE=SOCKETS.  

This option is ignored for TLI-mode endpoints, which always block until the 
data is passed to the local network. Normally, socket-mode endpoints do not 
block. However, if the amount of available buffer space is exceeded, the 
TSENDTO request blocks by default until buffer space becomes available. 
OPTCD=NOBLOCK can be used in this case to prevent the endpoint from 
becoming blocked. 

Buffer space is limited by configuration parameters and TOPTION 
negotiation. 

Default: BLOCK. 

Assembler Language Macro Instructions    1–235 



TSENDTO 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when the 
TSENDTO macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword boundary. If 
ECB=INTERNAL is coded, the TPL field normally used to store the ECB 
address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if ECB=INTERNAL 
was coded, and any value specified with the ECB operand is overwritten by 
the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address Address of the exit routine to schedule when the TSENDTO macro 
instruction associated with this TPL completes. 

 The TPL exit routine is scheduled only if asynchronous mode was specified. 
In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TSENDTO macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to 
use for this request. If no MF operand is specified, the standard form is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of the 
MF subparameters. 

Default: MF=I (standard, nonreentrant form). 

1–236     Assembler API Programmer Reference 



TSENDTO 

Completion Information 

The TSENDTO macro instruction completes normally (or conditionally) when 
the datagram is moved from the application program’s storage area, and is 
forwarded to the transport provider for sending to the destination transport user. 

Normal completion of the TSENDTO macro instruction implies nothing in 
regard to when the datagram is actually sent, and should only be interpreted to 
mean that the transport provider has taken custody of the user data, and the 
storage area provided by the application program can be reused by another 
TSENDTO macro instruction.  

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY), and a conditional completion code is returned in 
register zero. The TPL return code field is set accordingly. No other information 
is returned.  

If the TSENDTO macro instruction completes abnormally, the datagram is not 
sent to the destination transport user. The state of the endpoint is unchanged. 
The general return code in register 15, and recovery action code in register zero, 
indicate the nature of the failure. The TPL return code field may also contain a 
specific error code that identifies a particular error.  

Return Codes 

The following table lists the symbolic names for the TSENDTO return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code  
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY 

TRFAILED TAEXCPTN  TENONEGO 

 TAINTEG  TEPROTO 

 TAENVIRO TESYSERR TESUBSYS  TEDRAIN 
TESTOP TETERM TEUNSUPO 
TEUNSUPF  

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB  

 TEBDEXIT TEBDDATA TEBDOPTN  

Assembler Language Macro Instructions    1–237 



TSENDTO 

General 
Return Code 
(Register 15) 

Recovery 
Action Code  
(Register 0) 

Conditional or Specific Error 
Code/Explanation 

 TAPROCED TEAMODE  TESTATE TEREQOVR 
TEBUFOVR  

 TATPLERR TEACTIVE  

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address space.

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Usage Information 

The TSENDTO macro sends a datagram through an endpoint operating in 
connectionless mode. In addition to user data comprising the datagram, the 
application program provides the protocol address of the destination transport 
user and protocol options associated with the datagram. The datagram is 
transmitted as a single, contiguous unit of data and must be provided to the 
transport provider in its entirety. 

The datagram may be provided as a simple, contiguous segment of storage, or as 
a set of non-contiguous segments indirectly addressed via a data vector. 

If the option is: 

■  OPTCD=DIRECT a complete datagram must be contained in the storage area 
identified by the DABUF and DALEN operands. 

■  OPTCD=INDIR—DABUF and DALEN identify a storage area initialized 
with the addresses and lengths of non-contiguous storage segments 
containing the datagram. The total amount of data to be transferred is the 
sum of the lengths of the individual segments. The total length must not 
exceed the maximum size of the interface data unit supported by the 
transport provider, or the maximum size of a transport service data unit. 
Upon completion of the TSENDTO request, the length of the indirect data 
vector is updated to reflect the actual amount of data transferred. 

1–238     Assembler API Programmer Reference 



TSENDTO 

Each entry in an indirect data vector consists of a fullword address followed by a 
fullword length. If the length is zero, the entry is ignored. If the length is 
nonzero, the address must reference a valid storage area containing user data, 
and may be aligned on any boundary convenient for the application program. 
The length of the vector determines the number of entries in the list. 

Unlike most other macro instructions, multiple TSENDTO macro instructions 
can be issued without waiting for the first to complete. However, each macro 
requires its own TPL. The maximum number that can be issued before one must 
complete is an API variable that can be modified by the TOPTION macro. The 
default value is set when the API is installed. TSENDTO macros are completed in 
the order in which they are issued.  

Datagrams sent with the TSENDTO macro are buffered in the API address space 
before they are forwarded to the transport provider. The total amount of send 
buffering allocated for an endpoint is also the API option. 

Data contained in the application program’s storage area is moved into the API 
address space when the TSENDTO macro is accepted. Therefore, if the 
TSENDTO macro instruction is executed in asynchronous mode, the application 
program can reuse the storage area before the macro instruction completes. In 
fact, the storage area can be used to send another datagram as long as an inactive 
TPL is available. The content of a datagram is application-dependent, and is not 
interpreted by the API or the transport provider. The maximum amount that can 
be sent with a single TSENDTO request can be determined by issuing a TINFO 
macro instruction. 

Assembler Language Macro Instructions    1–239 



TSTATE 

TSTATE 
Test TPL and Return Endpoint State—The TSTATE macro instruction is used to 
acquire the current state of an endpoint. Since the TSTATE macro instruction is 
TPL-based like most other API macro instructions but does not modify any fields 
in the TPL, it can also be used to determine the active or inactive state of a TPL.  
[ symbol ] TSTATE MF = ( E, tpl_address ) 

MF = ( E, tpl_address ) Execute form of the TSTATE macro instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
identifying the entry point.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: None (must be coded as indicated). 

Completion Information 

If the TSTATE macro instruction completes normally, the general return code is 
set to zero (TROKAY), and a fullword of state information is returned in register 
zero. The TPL return code field is not modified, and no other information is 
returned.  

If the TSTATE macro instruction completes abnormally, the general return code 
in register 15, and recovery action code in register zero, indicate the nature of the 
failure. If the general return code is TRFAILED, the TPL was active, and the 
recovery action code indicates whether or not the active request was posted 
complete. Otherwise, a fatal error occurred. The TPL return code field is not 
updated, and the state of the endpoint is unchanged. 

Note: The SYNAD or LERAD exit routines are not entered when the TSTATE 
macro instruction completes abnormally.  

1–240     Assembler API Programmer Reference 



TSTATE 

Return Codes 

The following table lists the symbolic names for the TSTATE return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

Register 15 Register 0 Explanation 

TROKAY Endpoint 
State 

The TPL is inactive, and the TPLEPID field 
designates a valid endpoint. The state of the 
endpoint is returned in register zero.  

TRFAILED TAEXCPTN The TPL is active, and the requested operation has 
been posted complete. A TCHECK macro 
instruction does not suspend the issuing task.  

TRFAILED TATPLERR The TPL is active, and the requested operation has 
not been posted complete. A TCHECK macro 
instruction may cause the issuing task to be 
suspended. 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely 
due to corrupted data areas maintained within the 
application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is 
closed, or is in the process of closing.  

Note: Conditional or specific error codes are not applicable to the TSTATE 
macro. 

Assembler Language Macro Instructions    1–241 



TSTATE 

Usage Information 

The TSTATE macro instruction is used to determine the state of an endpoint, and 
implicitly, the state of a TPL that references it.  

The TSTATE macro instruction is TPL-based, and therefore requires a TPL for 
making the request. If the TPL is valid and inactive, a fullword of state 
information is returned to the application program in register zero. The TPL is 
unchanged. The information returned is called a Transport Endpoint State Word 
(TSW), and is mapped by the TSW DSECT.  

The state word consists of two components:  

■  A halfword containing status bits representing pending activity on the 
endpoint 

■  A halfword state value that represents the current state of the endpoint  

This state information is standard for all endpoints, and all transport providers. 
However, not all states are valid for a particular provider. For example, if a 
transport provider does not support orderly release of a connection, the endpoint 
can never acquire the release-in-progress state.  
 

Endpoint State State Description 

TSCLOSED Closed The state of an endpoint before it is opened with a
TOPEN macro instruction. By definition, an 
endpoint that exits cannot be in the closed state. 
Any the API macro instruction executed at an 
endpoint in the closed state results in a fatal error.

An endpoint returns to the closed state when it is 
closed by a TCLOSE macro instruction. 

TSOPENED Opened The state of an endpoint immediately after being 
opened with a TOPEN macro instruction. An 
endpoint in the opened state is not associated 
with any local protocol address, and cannot 
receive inbound or outbound connection 
requests.  

An endpoint returns to the opened state after 
being unbound with a TUNBIND macro 
instruction.  

1–242     Assembler API Programmer Reference 



TSTATE 

Endpoint State State Description 

TSDSABLD Disabled The state of an endpoint immediately after a local 
protocol address has been bound with a TBIND 
macro instruction, and before it is enabled to 
receive connect indications. An endpoint in the 
disabled state and operating in connectionless 
mode is ready to send or receive datagrams. An 
endpoint in the disabled state and operating in 
connection mode is ready to initiate a connection 
request.  

A client-mode endpoint returns to the disabled 
state after a connection is released.  

TSINCONN Enabled The state of an endpoint after a local protocol 
address is bound, and a nonzero value for 
QLSTN is specified in the TBIND macro 
instruction. An endpoint in the enabled state 
cannot operate in connectionless mode. An 
endpoint in the enabled state and operating in 
connection mode is ready to receive connect 
indications.  

A server-mode endpoint returns to the enabled 
state after a connect indication is accepted 
(multithreaded mode) or rejected, or when the 
connection is released.  

Assembler Language Macro Instructions    1–243 



TSTATE 

Endpoint State State Description 

TSINCONN Connect-
indication- 
pending 

The state of an endpoint when one or more 
connect indications are received with the 
TLISTEN macro instruction that have not been 
accepted or rejected by the application program.  

TSOUCONN Connection-
in-progress 

The state of an endpoint when a TCONNECT 
macro instruction has been executed, and a 
connect confirmation has not been received by the
application program.  

TSCONNCT Connected The state of an endpoint after a connect indication
is accepted with a TACCEPT macro instruction, 
or a confirm indication is received with a 
TCONFIRM macro instruction.  

An endpoint operating in connectionless mode 
enters the connected state when an association is 
established, and becomes ready to send and 
receive datagrams with the TSEND and TRECV 
macro instructions. 

TSINRLSE Release-
indication 
-pending 

The endpoint remains in the connect-indication-
pending state as long as at least one indication 
remains pending, even though some have been 
accepted or rejected. 

The endpoint remains in the connect-in-progress 
state until a TCONFIRM macro instruction is 
executed to receive the connect confirmation.  

In single-threaded mode, the endpoint that 
received the connect indication enters the 
connected state; in multithreaded mode, the 
connection is accepted to a disabled endpoint, 
causing it to enter the connected state. An 
endpoint in the connected state and operating in 
connection mode is ready to send and receive 
data.  

The state of an endpoint that was connected after 
a TRELACK macro instruction is executed to 
acknowledge an orderly release indication. The 
application program may continue sending data 
through the endpoint. 

1–244     Assembler API Programmer Reference 



TSTATE 

Endpoint State State Description 

The endpoint remains in the release-indication-
pending state until a TRELEASE macro 
instruction is executed, at which time it returns to 
the enabled or disabled state.  

TSOURLSE Release-in-
progress 

The state of an endpoint that was connected after 
a TRELEASE macro instruction is executed. The 
application program may continue receiving data 
arriving at the endpoint.  

The endpoint remains in the release-in-progress 
state until a release indication is acknowledged 
with the TRELACK macro instruction, at which 
time it returns to the enabled or disabled state.  

State transitions occur when the macro instruction causing the transition 
completes normally and the request is posted complete, either by posting the 
ECB associated with the TPL, or entering the TPL exit routine. A state transition 
never occurs when a macro instruction completes abnormally. 

If the TPL is active, the TSTATE macro instruction completes abnormally. The 
recovery action code returned in register zero can be tested to determine if the 
active request was posted complete. If it has, a TCHECK macro instruction can 
be executed at the TPL without causing a system WAIT to be issued by the API. 
Thus, the TSTATE macro instruction can be used to poll the TPL to determine 
when it is safe to issue a TCHECK macro instruction without suspending the 
issuing task.  

A TSTATE macro instruction can be executed at any endpoint using any TPL 
(active or inactive) without affecting the state of the endpoint, or modifying the 
TPL. 

Assembler Language Macro Instructions    1–245 



TUNBIND 

TUNBIND 
Unbind Protocol Address from Endpoint—The TUNBIND macro instruction is 
used to disable an endpoint and unbind the local protocol address that was 
previously bound to it with a TBIND macro instruction. Once disabled, the 
endpoint can no longer receive connect indications, or be used to initiate a 
connection.  
[ symbol ] TUNBIND [ EP = endpoint_id ] 
                   [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                                [ ,SYNC | ASYNC ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ] 
                   [ ,EXIT = tpl_exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E,[ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TUNBIND macro instruction executes.  

The value specified must be the endpoint identifier returned by the TOPEN 
macro instruction when the endpoint was opened. An invalid or corrupted 
value causes unpredictable results.  

Default: Zero (no endpoint specified). 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that a 
subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be specified
by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise.  

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TUNBIND macro 
instruction.  

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction is complete. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control immediately after scheduling the TUNBIND request. The application
program is responsible for issuing the TCHECK macro instruction.  

Default: SYNC (synchronous mode). 

1–246     Assembler API Programmer Reference 



TUNBIND 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when the 
TUNBIND macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword boundary. If 
ECB=INTERNAL is coded, the TPL field normally used to store the ECB 
address is used as an internal ECB.  

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if ECB=INTERNAL 
was coded, and any value specified with the ECB operand is overwritten by 
the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB).  

EXIT = tpl_exit_routine_address Address of an exit routine to be scheduled when the TUNBIND macro 
instruction associated with this TPL completes. 

The TPL exit routine is scheduled only if asynchronous mode was specified. 
In synchronous mode, any address specified with the EXIT operand is 
overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand. 

Default: Not indicated (no TPL exit routine).  

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TUNBIND macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL to 
use for this request. If no MF operand is specified, the standard form is used. 

See List, Generate, Modify, and Execute Forms for valid combinations of the 
MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Assembler Language Macro Instructions    1–247 



TUNBIND 

Completion Information 

The TUNBIND macro instruction completes normally when the local protocol 
address is unbound, and the endpoint disabled. The state of the endpoint is 
changed from disabled (TSDSABLD) or enabled (TSENABLD) to opened 
(TSOPENED).  
On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned.  

If the TUNBIND macro instruction completes abnormally, the state of the 
endpoint remains unchanged. The general return code in register 15, and 
recovery action code in register zero, indicate the nature of the failure. The TPL 
return code field may contain a specific error code identifying a particular error.  

Return Codes 

The following table lists the symbolic names for the TUNBIND return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery Action 
Code (Register 0) 

Conditional or Specific Error 
Code/Explanation 

TROKAY TAOKAY TCOKAY 

 TAENVIRO TESYSERR TESUBSYS  TEDRAIN  
TESTOP TETERM 

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB  
 TEBDEXIT 

 TAPROCED TEAMODE TESTATE TEINCMPL 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is 
invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is 
corrupted.  

1–248     Assembler API Programmer Reference 



TUNBIND 

General 
Return Code 
(Register 15) 

Recovery Action 
Code (Register 0) 

Conditional or Specific Error 
Code/Explanation 

TRFATLAM diag. code A fatal access method error occurred, most 
likely due to corrupted data areas maintained 
within the application program's address 
space. 

 

TRFATLAP diag. code The APCB associated with the transport user 
is closed, or is in the process of closing.  

Usage Information 

The TUNBIND macro instruction is used to disable an endpoint and disassociate 
the local protocol address that was bound with the TBIND macro instruction. If 
the endpoint was operating in connection mode, no connection requests can be 
initiated or received through the endpoint. If the endpoint was operating in 
connectionless mode, no datagrams can be sent or received through the 
endpoint.  

After a TUNBIND macro instruction executes, new options can be specified, and 
another local protocol address can be bound to the endpoint. 

Assembler Language Macro Instructions    1–249 



TUSER 

TUSER 
Associate User with Endpoint—The TUSER macro instruction is used to 
associate a user ID with an endpoint for accounting and authorization purposes. 
Any SMF records written contain the user ID, and access to privileged resources 
or facilities is controlled by access privileges associated with the user ID, and 
obtained from the local security system.  
[ symbol ] TUSER [ EP = endpoint_id ] 
                 [ ,USER = endpoint_userid ] 
                 [ ,OPTCD = ( [ SHORT | LONG | EXTEND ] 
                              [ ,SYNC | ASYNC ] 
                              [ ,TUB | ACEE ] 
                              [ ,PLAIN | CIPHER ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = tpl_exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E,[ tpl_address ] ) ] 

EP = endpoint_id  Endpoint at which the TUSER macro instruction is to be executed.  

The value specified must be the endpoint identifier returned by the 
TOPEN macro instruction when the endpoint was opened. An invalid or 
corrupted value causes unpredictable results.  

Default: Zero (no endpoint specified). 

USER =endpoint_userid Associates a user ID with the endpoint for authorization and accounting 
purposes. 

OPTCD=TUB the specified value must be the address of a Transport 
Endpoint User Block (TUB) containing the user information.  

OPTCD=ACEE the specified value must be the address of an Accessor 
Environment Element (ACEE) obtained from the local security system 
when the user ID was authenticated.  

If this operand is not coded, the application name specified in the APCB 
is used. 

The password contained in the TUB may be plain text or cipher text 
depending on the OPTCD=PLAIN | CIPHER operand. If cipher text, it 
is assumed that the password was encrypted using the encryption 
mechanism supplied by the local security system. The API merely 
provides the password to the security system in its encrypted form. 

The user ID or application name is also supplied to the transport 
provider. How this information is used is unspecified, and provider-
dependent.  

Default: Zero (no user ID; use application name for accounting and 
authorization).  

1–250     Assembler API Programmer Reference 



TUSER 

OPTCD = SHORT | LONG | 
EXTEND 

Format attribute of the parameter list associated with this request.  

OPTCD=SHORT a different control block identifier used to indicate that 
a subset of the TPL was generated. 

OPTCD=LONG a standard, full-length TPL is generated. 

OPTCD=EXTEND an additional suffix to the standard length TPL is 
generated. The suffix contains ALET address extensions that can be 
specified by other request parameters. 

Default: SHORT if MF=I or MF operand omitted, LONG otherwise. 

OPTCD = SYNC | ASYNC Synchronization mode to use when executing the TUSER macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control 
is not returned to the application program until the requested macro 
instruction completes. A TCHECK macro instruction should not be 
executed since check processing is automatically performed by the API.  

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control immediately after scheduling the TUSER request. The 
application program is responsible for issuing the TCHECK macro 
instruction.  

Default: SYNC (synchronous mode). 

OPTCD = TUB | ACEE Format of user ID information referenced by the USER operand. 

OPTCD=TUB user ID, group, and password information is provided in 
a Transport User Block (TUB). 

OPTCD=ACEE the user information is contained in an Accessor 
Environment Element (ACEE) obtained from the local security system. 

Default: TUB (user information provided in TUB). 

Assembler Language Macro Instructions    1–251 



TUSER 

OPTCD = PLAIN | CIPHER Indicates whether the password contained in the Transport User Block 
(TUB) designated with the USER operand was encrypted, or is in its 
plain text form. 

OPTCD=PLAIN the password is in plain text. 

OPTCD=CIPHER the password is encrypted. 

The API uses this information when requesting user ID and password 
verification from the local security system.  

Default: PLAIN (password in plain text). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) to be posted by the API when 
the TUSER macro instruction associated with this TPL completes.  

The ECB can be any fullword of storage aligned on a fullword 
boundary. If ECB=INTERNAL is coded, the TPL field normally used to 
store the ECB address is used as an internal ECB. 

The ECB operand should only be coded when asynchronous mode is 
specified. In synchronous mode, the request is treated as if 
ECB=INTERNAL was coded, and any value specified with the ECB 
operand is overwritten by the internal ECB.  

This operand is mutually exclusive with the following EXIT operand.  

Default: INTERNAL (internal ECB). 

EXIT = tpl_exit_routine_address Address of an exit routine to be scheduled when the TUSER macro 
instruction associated with this TPL completes.  

The TPL exit routine is scheduled only if asynchronous mode was 
specified. In synchronous mode, any address specified with the EXIT 
operand is overwritten by an internal ECB.  

This operand is mutually exclusive with the previous ECB operand.  

Default: Not indicated (no TPL exit routine). 

1–252     Assembler API Programmer Reference 



TUSER 

MF = ( I | L | G | M | E ,  
[ tpl_address ] ) 

Standard, list, generate, modify, or execute form of the TUSER macro 
instruction.  

The second sublist operand, tpl_address, specifies the address of the TPL 
to use for this request. If no MF operand is specified, the standard form 
is used.  

See List, Generate, Modify, and Execute Forms for valid combinations of 
the MF subparameters. 

Default: MF=I (standard, nonreentrant form).  

Completion Information 

The TUSER macro instruction completes normally when the designated user has 
been associated with the endpoint. All subsequent macro instructions issued at 
the endpoint are executed with the access privileges of the new user. An SMF 
record may be written to account for resources utilized by the previous user.  

Note: Currently, no authorization checking is performed. 

On normal return to the application program, the general return code in register 
15 is set to zero (TROKAY). The conditional completion code in register zero is 
always zero (TCOKAY), and the TPL return code field is set accordingly. No 
other information is returned. 

If the TUSER macro instruction completes abnormally, the previous user 
continues to be associated with the endpoint, and the state of the endpoint is 
unchanged. The general return code in register 15, and recovery action code in 
register zero, indicate the nature of the failure. The TPL return code field can also 
contain a specific error code that identifies a particular error.  

Assembler Language Macro Instructions    1–253 



TUSER 

Return Codes 

The following table lists the symbolic names for the TUSER return codes. The 
values associated with the symbolic names can be found in the TPL macro 
expansion. 
 

General 
Return Code 
(Register 15) 

Recovery 
Action Code 
(Register 0) 

Conditional or Specific Error Code/Explanation  

TROKAY TAOKAY TCOKAY 

TRFAILED TAENVIRO TESYSERR   TESUBSYS TEDRAIN  
TESTOP TETERM TEUNAUTH  

 TAFORMAT TEBDFNCD TEBDOPCD TEBDECB   
TEBDEXIT TEBDUSER TEBDACEE  

 TAPROCED TEAMODE TESTATE TEINCMPL 

 TATPLERR TEACTIVE 

TRFATLFC func. code The function code loaded into register zero is invalid. 

TRFATLPL diag. code The TPL address is invalid, or the TPL is corrupted.  

TRFATLAM diag. code A fatal access method error occurred, most likely due to corrupted data 
areas maintained within the application program's address space. 

TRFATLAP diag. code The APCB associated with the transport user is closed, or is in the 
process of closing.  

1–254     Assembler API Programmer Reference 



TUSER 

Usage Information 

The TUSER macro instruction is used to associate a new user with an endpoint 
for authorization and accounting purposes. The new user is identified by a 
Transport User Block (TUB) or an Accessor Environment Element (ACEE). The 
access privileges of the new user replace those of the user (if any) defined when 
the endpoint was opened with a TOPEN macro instruction. 

If user information is provided with a TUB, the API authenticates the user ID, 
group name, and password combination using the local security system. 
Otherwise, the application must authenticate the user, and provide the address 
of an ACEE created by the security system. 

The TUSER macro instruction is provided for multiple-user application 
programs that implement a logon procedure. Since the logon information must 
be gotten from the user after a connection is established, the user ID to be 
associated with the endpoint is not known when the endpoint is created. In this 
case, the TOPEN macro instruction should associate the endpoint with the used 
ID of an overhead account, or use the default privileges associated with the 
application name (see APCB ). When the logon procedure has completed, the real 
user can be associated with the endpoint by issuing a TUSER macro instruction 

Assembler Language Macro Instructions    1–255 



  

Chapter 

2 DNR Directory Services 

 

This chapter describes DNR (Domain Name Resolver) directory services and 
how the DNR can be used to augment the use of API macro instructions. 

The DNR is a separate application program and can be configured to run in its 
own address space or in the same address space as the API. The DNR provides 
directory services to other application programs. These application programs 
generally use DNR to acquire network transport services for communicating 
with remote programs in a distributed processing environment. In fact, DNR 
uses the API to provide the transport between components of a distributed 
database that comprises a global network directory. 

 The following topics are covered in this chapter:  

■  Directory Database—Describes the Domain Name System (DNS) and local 
configuration data 

■  Syntactic Rules for Names—Describes the format and handling of locally 
managed names and simple domain names 

■  Directory Services Calls—Includes the calls used to access directory 
information services for the Domain Name Resolver (DNR) 

The Domain Name 
System (DNS) 

The directory consists of locally configured information and global information 
by supporting the Domain Name System (DNS). The DNS defines a distributed 
database system and provides a more dynamic information retrieval system 
than a local database search. You can get information from the DNR by 
invoking the DIRSRV macro instruction or the dirsrv() C function.  

The client provides the name of an object known to the DNR. The DNR 
searches the directory for information associated with that name or attribute 
and returns the information to the client.  

Directory services can be used to build transport protocol addresses by mapping 
host names and service names into network addresses and TCP or UDP port 
numbers.  

DNR Directory Services    2–1 



Directory Database 

Other Directory 
Services 

Other directory services are available to support application programs that 
process and distribute electronic mail. These services are currently provided by 
DNR:  

■  Given host name, return: 

– Network address  

– CPU and operating system information 

– List of well-known services supported by host 

– List of host names designated as mail routers for the given host  

■  Given alias name, return official host name 

■  Given network address, return official host name  

■  Given network name, return network number 

■  Given network number, return network name  

■  Given protocol name and service name, return associated transport protocol 
address (that is, TCP or UDP port number)  

■  Given protocol name, return official protocol number 

■  Given port number, return associated service name 

■  Given official protocol number, return protocol name  

2–2     Assembler API Programmer Reference 



Directory Database 

Directory Database  
The DNR information base consists of locally configured information and global 
information. Corresponding to this data, some services access locally configured 
information only. Others use both a local and globally distributed database, 
satisfied by DNR’s implementation of the Domain Name System (DNS).  

Domain Name System 

The Domain Name System (DNS) consists of: 

■  The domain name space 

■  Resource records that describe the name space 

■  Name servers 

■  Resolvers 

The domain name space is a tree structured name space meant to provide a 
mechanism for naming resources in such a way that the host, network, or 
protocol is transparent. Each node within the name space corresponds to a set of 
resources. These resources are identified in a defined data format and referred to 
as Resource Records (RR). Name servers and resolvers are application programs 
that exchange the resource records that describe the name space. 

The hierarchical structure of the domain name space is reflected in the format of 
a domain name. Each DNS node is represented by a label that is the simple name 
of the node. A fully-qualified domain name describes a path through the domain 
name space to a particular node, starting with the top-level (root) node. The 
name is formed by concatenating the simple names (or labels) of each node in 
right-to-left sequence, separated by periods (.) starting with the top-level 
domain.  

Thus, a four-level domain name appears in this format: 

level-4.level-3.level-2.level-1 

Information about the name space is divided into zones and held by the 
domain’s name servers. A name server’s function is to hold information about 
the domain name space and provide answers to resolver’s requests. The 
resolver’s function is to extract information from name servers in response to 
client requests. The DNR implements the resolver portion of the DNS and 
queries name servers for responses.  

DNR Directory Services    2–3 



Syntactic Rules for Names 

Local Configuration Data 

Local configuration data enables DNR to provide services not provided by the 
Domain Name System and provide an alternative to a network-based directory. 

Syntactic Rules for Names 
Names provided to DNR by the application program must conform to certain 
syntactic rules. Any name returned to the application program by DNR 
conforms to the same rules. These rules are defined separately for locally 
managed names and Internet domain names.  

Locally-Managed Names 

Locally-managed names consist of those names defined in locally-maintained 
configuration data sets, and can be one of the following: 

■  Alias name (for hosts only) 

■  Network name 

■  Service name 

■  Protocol name 

Such names are case-insensitive and consist of alphanumeric characters from the 
EBCDIC character set (a-z, A-Z, 0-9). You can also use the dash character (-) as 
long as it is embedded within the name (that is, it does not appear at the 
beginning or end of the name).  

Note: Locally managed names must be less than or equal to 40 characters in 
length.  

2–4     Assembler API Programmer Reference 



Directory Services Calls 

Simple Domain Names 

Simple domain names (domain name labels) are case-insensitive and consist of 
alphanumeric characters from the EBCDIC character set (a-z, A-Z, 0-9). You can 
also use the dash character (-) as long as it is embedded within the name (that is, 
it does not appear at the beginning or end of the name). 

■  Simple domain names must be less than or equal to 63 characters in length 

■  Fully-qualified domain names must be less than or equal to 255 characters in 
length, including the terminating period 

The period at the end of a domain name represents the root of the Domain Name 
System (DNS) and indicates that the name is fully qualified. A domain name that 
does not terminate with a period is assumed to be partially qualified. In the latter 
case, DNR constructs fully-qualified names by appending qualifiers from a 
search list in a predetermined order. 

Directory Services Calls 
This section includes the calls used to access directory information services for 
the Domain Name Resolver (DNR).  

Each macro instruction description includes the following information: 

■  The name of the macro instruction  

■  A brief statement of its function and use 

■  The assembler format description  

■  A detailed description of each operand 

■  A description of completion information returned 

■  A table of return codes 

■  General usage information 

Note: It is assumed that you are familiar with the API concepts and facilities 
presented in TCPaccess Assembler API Concepts. 

DNR Directory Services    2–5 



DIRSRV 

DIRSRV 
The DIRSRV macro instruction is defined in terms of its general use in returning 
information from the directory. Specific instances of the macro instruction are 
defined that correspond to the specific directory services listed in Other 
Directory Services earlier in this chapter. 

[ symbol ]  DIRSRV function_code, 

                   information_category,  

                   search_argument, 
                   NABUF = name_address, 
                   NALEN = name_length,  
                   VABUF = value_address, 
                   VALEN = value_length  
                   [ ,QNBUF = qualified_name_address ] 
                   [ ,QNLEN = qualified_name_length ]  
                   [ ,SYSID = MVS_subsystem_id ]  
                   [ ,TIME = time_limit ] 
                   [ ,SIZE = size_limit ] 
                   [ ,OPTCD = ( [ SYNC | ASYNC ]  
                                [ ,BLOCK | NOBLOCK ] 
                                [ ,LOCAL | GLOBAL ]  
                                [ ,COPY | ORIGINAL ] ) ] 
                   [ ,ECB = INTERNAL | event_control_block_addr ]  
                   [ ,EXIT = exit_routine_address ] 
                   [ ,MF = ( I | L | G | M | E ,[ dpl_address ] ) ] 

function_code  Valid values are:  

GET—Requested information is retrieved from the directory and 
returned to the application program.  

PURGE—A previously issued asynchronous DIRSRV request is purged. 

information_category—A category of information maintained by DNR. 
This operand in combination with the search argument determines the 
specific type of information requested by the application program.  

 

2–6     Assembler API Programmer Reference 



DIRSRV 

 Valid values are:  

HOST—Information regarding a specific host consisting of its official 
name, alias name, and network-layer addresses (that is, Internet 
addresses).  

NETWORK—Information regarding a specific network consisting of its 
official name and network number.  

SERVICE—Information regarding a well-known service consisting of its 
official name and transport-layer address (that is, TCP or UDP port 
number).  

PROTOCOL—Information regarding a specific protocol consisting of its 
official name and protocol number.  

HOSTSERV—Information regarding a specific host consisting of its 
network-layer addresses and associated well-known services available at 
those addresses.  

HOSTINFO—Information regarding a specific host consisting of a 
standardized CPU and operating system name.  

ROUTE—Information regarding electronic mail routes consisting of a 
list of host names willing to act as mail routers for a specific host. 

search_argument  Determines how the directory database is searched by indicating the 
specific type of information provided by the application program and 
implying the type of information returned by DNR.  

Valid values are:  

BYNAME—A name supplied by the application program in the storage 
area defined by the NABUF and NALEN operands. The value associated 
with the named object is returned in the storage area defined by the 
VABUF and VALEN operands.  

BYVALUE—A value supplied by the application program in the storage 
area defined by the VABUF and VALEN operands. The name of the 
object with the specified value is returned in the storage area defined by 
the NABUF and NALEN operands. 

BYALIA—An alias name (or real name) supplied by the application 
program in the storage area defined by the NABUF and NALEN 
operands. The real name associated with the alias name is returned in the 
storage area defined by the VABUF and VALEN operands.  

DNR Directory Services    2–7 



DIRSRV 

NABUF = name_address Address of a storage area in which the application program places the 
name of a host, network, service, or protocol, or in which DNR returns 
such a name.  

The type of name contained or returned in the storage area is determined 
by the values specified for information_ category and search_argument, 
and consists of a case-insensitive string of EBCDIC characters. Other 
syntactic rules may apply depending on the type of name.  

Default: Zero (no name storage area). 

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF operand. If 
the storage area contains a name provided by the application program, 
NALEN is the actual length of the name. If the storage area receives a 
name returned by DNR, NALEN is the maximum length of the storage 
area.  

The length is updated when the request completes, reflecting the actual 
length of the name returned. If no information is returned, the request 
completes abnormally and the length remains unchanged.  

A length of zero is invalid.  

Default: Zero (no name provided or returned).  

VABUF = value_address  Address of a storage area in which the application program places: 

■    An Internet address, network number, TCP or UDP port number 

■   Transport protocol number 

in which DNR returns such a value.  

The type of value contained or returned in the storage area is determined 
by the values specified for information_category and search_argument. 
The format of such values is type-dependent, and the length is indicated 
by the VALEN operand.  

Default: Zero (no value storage area). 

2–8     Assembler API Programmer Reference 



DIRSRV 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. 

If the storage area contains a value provided by the application program, 
VALEN is the actual length of the value.  

If the storage area receives a value returned by DNR, VALEN is the 
maximum length of the storage area. The length is updated when the 
request completes reflecting the actual length of the value returned. If no 
information is returned, the request completes abnormally and the length 
remains unchanged.  

A length of zero is invalid.  

Default: Zero (no value provided or returned). 

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified name 
associated with a partial name provided by the application program.  

The partially-qualified name is contained in the storage area specified by 
the NABUF and NALEN operands. Rules governing the formation of 
names and local configuration information maintained by DNR are used 
to construct fully-qualified names, which are used to search the directory 
for the desired information. 

The value returned depends on the type of search performed:  

■  If the search argument is BYALIAS, the name returned is the locally-
qualified alias used to search for the real name 

■  Otherwise, the search argument must be BYNAME and the name  
 returned is the locally-qualified name, or if an alias is encountered in 
the search, the last de-referenced alias name  

Default: Zero (no qualified name storage area). 

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated 
when the request completes reflecting the actual length of the fully-
qualified name returned. A length of zero indicates that no name is 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to 
the start of a valid storage area.  

Default: Zero (no qualified name returned). 

DNR Directory Services    2–9 



DIRSRV 

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that processes this request. Normally this 
operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note:  If more than one DNR subsystem is active on the local system, you 
must specify the subsystem you want to process this request.  

Default: Not indicated (use installation default). 

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information.  

Since portions of the distributed database are maintained on other 
systems, queries must sometimes be transmitted to remote destinations. 
The responses to such queries can contain referrals to other remote 
systems. Therefore, some types of directory requests may take an 
arbitrary amount of time to complete.  

You can use this operand to limit the amount of time spent searching for 
specific information. If the directory search is abandoned because the 
time limit is exceeded, an error code is returned to the application 
program.  

Default: Zero (use MAXTIME limit in DNRCFG00). 

SIZE = size_limit  Limits the amount of information returned. The ultimate limit is 
determined by the length of the storage area provided for receipt of the 
returned values.  

Note: For requests that may return lists or an array of values, this 
operand limits the number of elements returned. A value of zero 
indicates there is no limit (other than the size of the storage area 
provided).  

Default: Zero (no size limit). 

2–10     Assembler API Programmer Reference 



DIRSRV 

OPTCD = SYNC | ASYNC  Synchronization mode to use when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control 
is not returned to the application program until the requested macro 
instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control to the application program immediately after it is 
accepted by DNR. The application program is notified asynchronously 
when the request completes. The ECB and EXIT operands determine the 
form of asynchronous notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately available.  

OPTCD=BLOCK processing continues in accordance with the selected 
synchronization mode (OPTCD=SYNC | ASYNC). This option code 
affects disposition of a request after it is accepted by DNR. 

 OPTCD=NOBLOCK the request completes abnormally and the specific 
error code is set to DENOBLOK indicating that the request could not be 
completed immediately. OPTCD=NOBLOCK is generally used in 
conjunction with OPTCD=SYNC to prevent suspension of the issuing 
task for an extended period.  

Note: The issuing task may be momentarily suspended to let the DNR 
address space process the request. If the application program cannot 
afford to be suspended, even for a very small amount of time, then the 
request must be executed asynchronously (OPTCD=ASYNC).  

Default: BLOCK (suspend task indefinitely). 

OPTCD= 
LOCAL | GLOBAL 

Scope of the directory search. 

OPTCD=LOCAL only the locally maintained database is searched. 

OPTCD=GLOBAL the distributed database is searched, and queries for 
the requested information are sent to remote destinations as required.  

If this option is specified, and access to the network is disabled or 
inoperative, or no distributed nodes are configured, the request proceeds 
as if OPTCD=LOCAL was specified. 

Default: GLOBAL (global scope). 

DNR Directory Services    2–11 



DIRSRV 

OPTCD =  
COPY | ORIGINAL  

Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned.  

OPTCD=COPY a local copy of the requested information is used to 
satisfy the request.  

Note: Specifying OPTCD=COPY lets information gotten from a previous 
request be reused and returned to the application program, thus 
avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL information must be gotten from its original, 
authoritative source.  

Note: Specifying OPTCD=ORIGINAL assures that the most current 
information is returned. 

Default: COPY (use copy of original data). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an Event Control Block (ECB) posted by DNR when the 
directory request completes. The ECB can be any fullword of storage 
aligned on a fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are mutually exclusive 
operands. 

If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field 
of the DPL (DPLECBXR) is used in the following manner:  

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a WAIT 
macro instruction and clearing the ECB when posted. 

EXIT=exit_routine_address DNR uses the field as the address of an exit 
routine, and schedules the routine as indicated in EXIT=exit routine 
address below.  

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying 
the internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter 
list is flagged for processing as if ECB=INTERNAL was specified, and the 
ECB-EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB). 

2–12     Assembler API Programmer Reference 



DIRSRV 

EXIT=exit_routine_address Address of a routine scheduled for when the request completes. The EXIT 
and ECB operands share the same storage location in the parameter list 
and are mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified 
by OPTCD=ASYNC.  

If synchronous mode was specified, the exit routine is not used. If one is 
specified with this operand, the address is overwritten with an internal 
ECB before the request completes. 

Default: Not indicated (no exit routine). 

MF = ( I | L | G | M | E,  
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV 
macro instruction.  

The second sublist operand, dp_ address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended you use the list form of the macro to ensure 
DPL alignment on a full word boundary. If you do not use the list form, 
make sure you align the storage area used for the remote parameter list 
on a fullword boundary. This ensures that the internal ECB is aligned on 
a fullword boundary. 

Default: MF=I (inline, nonreentrant). 

DNR Directory Services    2–13 



DIRSRV 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set. If the application program specified a 
SIZE limit less than the defined number of entries for the given host, or if the 
entire list of return information will not fit in the storage area provided, the 
DCMORE conditional completion code is returned.  

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure.  

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

If the fully-qualified search string did not conform to the syntactic rules 
described in Syntactic Rules for Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request, the DNR returns an error code of DENODATA. The fully-
qualified search string is the result of a fully-qualified name given in the NABUF 
storage area, a local alias lookup, a name formed by appending the DNR search 
list strings to a partially qualified domain name, or a DNS alias referral.  

2–14     Assembler API Programmer Reference 



DIRSRV 

Return Codes 

The following table lists the symbolic return codes for the DIRSRV macro. The 
values associated with the symbolic names can be found in the DPL macro 
expansion. 
 

General Return 
Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY 
DCOVRFLO 

DCMORE 
DCNAMEIA 

DCALIAS 
DCLOCAL  

DRFAILED DAEXCPTN DENONAME 
DETIMOUT 
DENOCDS 
DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE 

DENOQNAM 
DENOTFND 
DEOVRFLO 
DENAMODE 

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL 
DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

DNR Directory Services    2–15 



GET-HOST-BYNAME 

GET-HOST-BYNAME 
The GET-HOST-BYNAME instance of the DIRSRV macro instruction is used to 
return a list of Internet addresses for a given host when its name is known. The 
name provided can be a local alias or a partially- or fully-qualified domain 
name, and the information returned can be gotten locally from the host-name 
configuration data set (DNRHSTxx) or globally from the Internet Domain Name 
System (DNS).  

[ symbol ] DIRSRV GET,HOST,BYNAME, 
                  NABUF = name_address,| 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,QNBUF = qualified_name_address ] 
                  [ ,QNLEN = qualified_name_length ]  
                  [ ,SYSID = MVS_subsystem_id ]  
                  [ ,TIME = time_limit ] 
                  [ ,SIZE = size_limit ]  
                  [ ,OPTCD = ( [ SYNC | ASYNC ] 
                               [ ,BLOCK | NOBLOCK ] 
                               [ ,LOCAL | GLOBAL ] 
                               [ ,COPY | ORIGINAL ] )]  
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ]  
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,HOST,BYNAME The DNR searches for and returns a list of Internet addresses 
associated with the host name or alias provided by the application 
program.  

NABUF = name_address  Address of a storage area  in which the application program places 
the name of a host. The name can be a local alias defined in the alias 
configuration member (DNRALCxx), a local host name defined in the 
host configuration member (DNRHSTxx), or an Internet domain name 
or alias name defined by the DNS. Names can be partially or fully 
qualified. All names must conform to the syntactic rules described in 
Syntactic Rules for Names. 

Default: Zero (no name storage area). 

2–16     Assembler API Programmer Reference 



GET-HOST-BYNAME 

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by 
the NABUF operand.  

The maximum length of a fully-qualified domain name is 255 bytes. 
The maximum length of a local alias name is 40 bytes. A length of 
zero is invalid.  

Default: Zero (no name provided).  

VABUF = value_address  Address of a storage area in which DNR returns a list of Internet 
addresses associated with the named host. Each Internet address is 
four bytes.  

The number of addresses returned is the smaller of the total number 
defined for the host, the length of the storage area divided by the 
length of an Internet address (four), or the number indicated by the 
SIZE operand.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF 
operand. The length is updated when the request completes reflecting 
the actual amount of information returned.  

If the request completes abnormally, no information is returned and 
the length remains unchanged. The minimum length of the storage 
area is four bytes. It is not necessary that the storage area length be 
evenly divisible by the length of an Internet address.  

Default: Zero (no value returned). 

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified 
name used to search for the requested information. The fully-qualified 
name is either the result of a local alias lookup, a name formed by 
appending the DNR search list strings to a partially qualified domain 
name, or a DNS alias referral.  

Default: Zero (no qualified name storage area). 

DNR Directory Services    2–17 



GET-HOST-BYNAME 

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF 
operand.  

This length is the maximum length of the storage area and is updated 
when the request completes reflecting the actual length of the fully-
qualified name returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and 
point to the start of a valid storage area.  

Default: Zero (no qualified name returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this 
operand is not required and an installation default is used.  

 The MVS_subsystem_id is as an alphanumeric string up to four 
characters.  

Note: If more than one DNR subsystem is active on the local system, 
the particular subsystem that will process this request must be 
indicated. 

Default: Not indicated (use installation default) 

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information. Since portions of the distributed database are maintained 
on other systems, queries must sometimes be transmitted to remote 
destinations. In addition, the responses to such queries can contain 
referrals to other remote systems. Therefore, some types of directory 
requests may take an arbitrary amount of time to complete. 

You can use this operand to limit the amount of time spent searching 
for specific information. If the directory search is abandoned because 
the time limit is exceeded, DETIMOUT error code is returned to the 
application program.  

Note: TIME is only applicable if OPTCD=GLOBAL.  

Default: Zero (use MAXTIME limit in DNRCFG00). 

2–18     Assembler API Programmer Reference 



GET-HOST-BYNAME 

SIZE = size_limit  Limits on the amount of information returned for requests that return 
lists or arrays of values.  

A value of zero indicates there is no limit and the DNR will return all 
Internet addresses associated with the domain name. If the return 
information will not fit in its entirety in the storage area provided or if 
the application program specifies a limit less than the defined number 
of Internet addresses for the given host, the DCMORE conditional 
completion code is returned.  

Default: Zero (no size limit).  

OPTCD = SYNC | ASYNC  The synchronization mode to use when executing this macro 
instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the requested 
macro instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
returns control to the application program immediately after it is 
accepted by DNR. The application program is notified 
asynchronously when the request completes.  

The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately 
available.  

OPTCD=BLOCK processing continues in accordance with the 
synchronization mode selected (OPTCD=SYNC | ASYNC). 

OPTCD=NOBLOCK the request completes abnormally and the 
specific error code is set to DENOBLOK indicating that the request 
could not be completed immediately.  

OPTCD=NOBLOCK is generally used in conjunction with 
OPTCD=SYNC to prevent suspension of the issuing task for an 
extended period.  

OPTCD=BLOCK|NOBLOCK is only applicable if OPTCD=GLOBAL. 
This option code affects disposition of a request after it is accepted by 
the DNR.  

DNR Directory Services    2–19 



GET-HOST-BYNAME 

Note: The issuing task can be momentarily suspended to let the DNR 
address space process the request. If the application program cannot 
afford to be suspended, even for a very small amount of time, then the 
request must be executed asynchronously (OPTCD=ASYNC).  

Default: BLOCK (suspend task indefinitely). 

OPTCD = LOCAL | GLOBAL  Scope of the directory search. 

OPTCD=LOCAL only the locally maintained database is searched. 

OPTCD=GLOBAL the distributed database is searched, and queries 
for the requested information are sent to remote destinations as 
required.  

If specified, and access to the network is disabled or inoperative, or no 
distributed nodes are configured, the request proceeds as if 
OPTCD=LOCAL were specified. 

Default: GLOBAL (global scope). 

OPTCD =  
COPY | ORIGINAL 

Specifies whether a copy of the information is used to complete the 
request or whether original information must be returned.  

OPTCD=COPY a local copy of the requested information is used to 
satisfy the request. Specifying OPTCD=COPY lets information gotten 
as the result of a previous request be reused and returned to the 
application program, thus avoiding time-consuming queries to 
remote destinations. 

OPTCD=ORIGINAL the information must be gotten from its original, 
authoritative source, ensuring that the most current information is 
returned. 

OPTCD=COPY|ORIGINAL is only applicable if OPTCD=GLOBAL.  

Default: COPY (use copy of original data). 

2–20     Assembler API Programmer Reference 



GET-HOST-BYNAME 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the 
directory request completes. The ECB can be any fullword of storage 
aligned on a fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are mutually exclusive 
operands. If asynchronous mode is specified (OPTCD=ASYNC), the 
ECB-EXIT field of the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a 
WAIT macro instruction and clearing the ECB when posted. If 
EXIT=exit_routine_address is specified, DNR uses the field as the 
address of an exit routine, and schedules the routine as indicated in 
the following EXIT operand text.  

ECB=INTERNAL DNR uses the field as an internal ECB. The 
application program is responsible for issuing a WAIT macro 
instruction specifying the internal ECB, but need not clear it when 
posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the 
parameter list is flagged for processing as if ECB=INTERNAL was 
specified, and the ECB-EXIT field is used as an internal ECB that is 
waited on and cleared automatically before returning control to the 
application program. 

Default: INTERNAL (internal ECB).  

EXIT = exit_routine_address Address of the next routine scheduled when the request completes. 
The EXIT and ECB operands share the same storage location in the 
parameter list and are mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is 
indicated by OPTCD=ASYNC. If synchronous mode was indicated, 
the exit routine is not used. If one is specified with this operand, the 
address is overwritten with an internal ECB before the request 
completes. 

Default: Not indicated (no exit routine). 

DNR Directory Services    2–21 



GET-HOST-BYNAME 

MF = ( I | L | G | M | E,  
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the 
DIRSRV macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, 
the standard form is used.  

Note: It is recommended you use the list form of the macro to ensure 
DPL alignment on a full word boundary. If you do not use the list 
form, make sure you align the storage area used for the remote 
parameter list on a fullword boundary. This ensures that the internal 
ECB is aligned on a fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands are not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set. If the application program specified a 
SIZE limit less than the defined number of entries for the given host, or if the 
entire list of return information will not fit in the storage area provided, the 
DCMORE conditional completion code is returned.  

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure.  

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

2–22     Assembler API Programmer Reference 



GET-HOST-BYNAME 

If the fully-qualified search string does not conform to the syntactic rules 
described in Locally-Managed Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request, the DNR returns an error code of DENODATA. The fully-
qualified search string is the result of a fully-qualified name given in the NABUF 
storage area, a local alias lookup, a name formed by appending the DNR search 
list strings to a partially qualified domain name, or a DNS alias referral.  

Return Codes 

The following table lists the symbolic return codes for the GET-HOST-BYNAME 
macro. The values associated with the symbolic names can be found in the DPL 
macro expansion. 
 

General 
Return Code 

Recovery 
Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY 
DCOVRFLO 

DCMORE 
DCNAMEIA 

DCALIAS 
DCLOCAL  

DRFAILED DAEXCPTN DENONAME 
DETIMOUT 
DENOCDS 
DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE 

DENOQNAM
DENOTFND 
DEOVRFLO 
DENAMODE 

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL 
DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

DNR Directory Services    2–23 



GET-HOST-BYNAME 

Usage Information 

The GET-HOST-BYNAME instance of the DIRSRV macro is used to return a list 
of Internet addresses given an Internet domain name.  

■  If OPTCD=LOCAL, the DNR returns information received from the host 
configuration member (DNRHSTxx) 

■  If OPTCD=GLOBAL, the DNR returns information received from the 
Domain Name System Address (A) records  

The list of returned Internet addresses is sorted according to the networks given 
in the network preference configuration member (DNRNPCxx).  

Example This example shows the use of GET-HOST-BYNAME. The request is to find the 
list of internet addresses for the host NS.NASA.GOV. The application supplies 
this DIRSRV information:  
NABUF = (address of:)  

 
S . N A S A . G O V     

NALEN = 11 VABUF = (address of:) 

 
                      

VALEN = 100 QNBUF = (address of:)  

 
                            

QNLEN = 100  
SIZE = 0  

This information is returned:  
NABUF = (address of:)  

 

NALEN = 11  
VABUF = (address of:)  

 
0x66 0x10 0x0a 0xc0 0x34 0xc3 0x0a 

VALEN = 8  
QNBUF = (address of:)  

 
S . N A S A . G O V .    

QNLEN = 12  
SIZE = 2  

2–24     Assembler API Programmer Reference 



GET-HOST-BYVALUE 

Because the search string, ‘NS.NASA.GOV’ is partially qualified, the search list 
strings were appended to ‘NS.NASA.GOV’. The root (.) is always included in the 
search list, therefore, the directory was searched for ‘NS.NASA.GOV.’. The DNR 
received a DNS response for ‘NS.NASA.GOV.’ and returned the information to 
the application program. 

GET-HOST-BYVALUE 
The GET-HOST-BYVALUE instance of the DIRSRV macro instruction is used to 
return a fully-qualified host name for a host when its address is known. The 
address provided may be an address defined locally or globally known to the 
Internet Domain Name System (DNS) and the information returned may be 
returned locally from the host name configuration member (DNRHSTxx) or 
globally.  

s[ symbol ] DIRSRV GET,HOST,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,TIME = time_limit ] 
                  [ ,OPTCD = ( [ SYNC | ASYNC ]  
                               [ ,BLOCK | NOBLOCK ]  
                               [ ,LOCAL | GLOBAL ]  
                               [ ,COPY | ORIGINAL ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,HOST,BYVALUE  DNR searches for and returns a fully-qualified host name associated with 
the host Internet address provided by the application program.  

NABUF = name_address   Address of a storage area in which the DNR returns a fully-qualified host 
name associated with the given Internet address.  

Default: Zero (no name storage area). 

DNR Directory Services    2–25 



GET-HOST-BYVALUE 

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF operand.  

The length is updated when the request completes, reflecting the actual 
amount of information returned. If the request completes abnormally, no 
information is returned and the length remains unchanged.  

Default: Zero (no name returned). 

VABUF = value_address  Address of a storage area in which the application program  placed a four-
byte Internet address.  

Default: Zero (no value storage area).  

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. 
The value of the storage area must be four bytes.  

Default: Zero (no value provided). 

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this 
operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length.  

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be indicated.  

Default: Not indicated (use installation default). 

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information.  

Since portions of the distributed database are maintained on other 
systems, queries must sometimes be transmitted to remote destinations. 
The responses to such queries may contain referrals to other remote 
systems. Therefore, some types of directory requests can take an arbitrary 
amount of time to complete.  

Use this operand to limit the amount of time spent searching for specific 
information. If the directory search is abandoned because the time limit 
was exceeded, DETIMOUT error code is returned the application program.  

Note: TIME is only applicable if OPTCD=GLOBAL.  

Default: Zero (use MAXTIME limit in DNRCFG00). 

2–26     Assembler API Programmer Reference 



GET-HOST-BYVALUE 

OPTCD =  
SYNC | ASYNC  

Synchronization mode to use when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by 
DNR. The application program is notified asynchronously when the 
request completes. The ECB and EXIT operands determine the form of 
asynchronous notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

The disposition of a request if the information is not immediately 
available. 

OPTCD=BLOCK processing continues in accordance with the 
synchronization mode selected (OPTCD=SYNC | ASYNC). 

OPTCD=NOBLOCK the request completes abnormally and the specific 
error code is set to DENOBLOK indicating the request could not be 
completed immediately.  

Note: OPTCD=NOBLOCK is generally used in conjunction with 
OPTCD=SYNC to prevent suspension of the issuing task for an extended 
period of time.  

The issuing task may be momentarily suspended to let the DNR address 
space process the request. If the application program cannot afford to be 
suspended, even for a very small amount of time, then the request must be 
executed asynchronously (OPTCD=ASYNC).  

OPTCD=BLOCK|NOBLOCK is only applicable if OPTCD=GLOBAL. This 
option code affects disposition of a request after it is accepted by DNR.  

Default: BLOCK (suspend task indefinitely). 

DNR Directory Services    2–27 



GET-HOST-BYVALUE 

OPTCD =  
LOCAL | GLOBAL  

Scope of the directory search. 

OPTCD=LOCAL only the locally-maintained database is searched. 

OPTCD=GLOBAL the distributed database is searched, and queries for the 
requested information are sent to remote destinations as required.  

If this option is specified, and access to the network is disabled or 
inoperative, or no distributed nodes are configured, the request proceeds 
as if OPTCD=LOCAL were specified. 

OPTCD=COPY|ORIGINAL is only applicable if OPTCD=GLOBAL.  

Default: GLOBAL (global scope). 

OPTCD =  
COPY | ORIGINAL  

 Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned. 

OPTCD=COPY use a local copy of the requested information to satisfy the 
request. Specifying OPTCD=COPY lets information returned as the result 
of a previous request be reused and returned to the application program, 
thus avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL get the information from its original, authoritative 
source. Specifying OPTCD=ORIGINAL ensures that the most current 
information is returned. 

Default: COPY (use copy of original data).  

2–28     Assembler API Programmer Reference 



GET-HOST-BYVALUE 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the 
directory request completes. The ECB can be any fullword of storage 
aligned on a fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are mutually exclusive 
operands. If asynchronous mode is specified (OPTCD=ASYNC), the ECB-
EXIT field of the DPL (DPLECBXR) is used in this manner. 

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a WAIT 
macro instruction and clearing the ECB when posted. If  is specified, DNR 
uses the field as the address of an exit routine, and schedules the routine as 
indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying 
the internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter 
list is flagged for processing as if ECB=INTERNAL was specified, and the 
ECB-EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT = 
exit_routine_address 

Address of a routine to schedule when the request completes. The EXIT 
and ECB operands share the same storage location in the parameter list 
and are therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified 
by OPTCD=ASYNC. If synchronous mode is specified, the exit routine is 
not used. If one is specified with this operand, the address is overwritten 
with an internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

DNR Directory Services    2–29 



GET-HOST-BYVALUE 

MF = ( I | L | G | M | 
E, [ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV 
macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended to use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make 
sure you align the storage area used for the remote parameter list on a 
fullword boundary. This ensures that the internal ECB is aligned on a 
fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

2–30     Assembler API Programmer Reference 



GET-HOST-BYVALUE 

Return Codes 

The following table lists the symbolic return codes for the GET-HOST-BYVALUE 
macro. The values associated with the symbolic names can be found in the DPL 
macro expansion. 
 

General 
Return 
Code 

Recovery 
Action Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY DCLOCAL  

DRFAILED DAEXCPTN DENONAME DETIMOUT 
DENOCDS DENODATA 
DEQNMODE 

DENOVALU 
DERFAIL 
DEOVRFLO 
DENAMODE  

DENOQNAMDENOTFN
D DENOBLOK 
DEVAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Usage Information 

The GET-HOST-BYVALUE instance of the DIRSRV macro is used to get a fully-
qualified domain name given an Internet address.  

■  If OPTCD=LOCAL, the DNR returns information found in the host 
configuration member (DNRHSTxx) 

■  If OPTCD=GLOBAL, the DNR returns information received from Domain 
Name System Pointer (PTR) records 

DNR Directory Services    2–31 



GET-HOST-BYVALUE 

Example This example shows the use of GET-HOST-BYVALUE. The request is to find the 
host name for Internet address 192.52.195.10.  

The application supplies this DIRSRV information:  
NABUF = (address of:)  
 

                            
NALEN = 100  
VABUF = (address of:)  
 

0x34 0xc3 0x0a     

VALEN = 4 

This information is returned:  
NABUF = (address of:) 
 

S . N A S A . G O V .    
NALEN = 12  
VABUF = (address of:) 
 

0x34 0xc3 0x0a     

VALEN = 4  

2–32     Assembler API Programmer Reference 



GET-HOST-BYALIAS 

GET-HOST-BYALIAS 
The GET-HOST-BYALIAS instance of the DIRSRV macro instruction is used to 
get a fully-qualified domain name for a host when its alias is known. The name 
provided can be a local alias or a partial or fully-qualified domain name alias, 
and the information returned may be obtained locally from the alias 
configuration member (DNRALCxx) or globally from the Internet Domain Name 
System (DNS).  

[ symbol ]DIRSRV GET,HOST,BYALIAS, 
                 NABUF = name_address, 
                 NALEN = name_length, 
                 VABUF = value_address, 
                 VALEN = value_length  
                 [ ,QNBUF = qualified_name_address ]  
                 [ ,QNLEN = qualified_name_length ] 
                 [ ,SYSID = MVS_subsystem_id ]  
                 [ ,TIME = time_limit ] 
                 [ ,OPTCD = ( [ SYNC | ASYNC ] 
                              [ ,BLOCK | NOBLOCK ]  
                              [ ,LOCAL | GLOBAL ]  
                              [ ,COPY | ORIGINAL ] ) ] 
                 [ ,ECB = INTERNAL | event_control_block_addr ] 
                 [ ,EXIT = exit_routine_address ] 
                 [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,HOST,BYALIAS  DNR searches for and returns the fully-qualified name associated with the 
alias provided by the application program.  

NABUF = name_address Address of a storage area in which the application program places the alias 
name of a host.  

The name can be a local alias defined in the alias configuration member 
(DNRALCxx) or an Internet domain alias name defined by the DNS. Names 
can be partially or fully qualified. All names must conform to the syntactic 
rules described in Locally-Managed Names.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the alias located in the storage area identified by the 
NABUF operand.  

The maximum length of a fully-qualified domain name is 255 bytes. The 
maximum length of a local alias name is 40 bytes. A length of zero is invalid.  

Default: Zero (no name provided).  

DNR Directory Services    2–33 



GET-HOST-BYALIAS 

VABUF = value_address  Address of a storage area in which the DNR returns a fully-qualified name 
associated with the given alias.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand.  

The length is updated when the request completes reflecting the actual amount 
of information returned. If the request completes abnormally, no information 
is returned and the length remains unchanged.  

Default: Zero (no value returned).  

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified name used 
to search for the requested information.  

The fully-qualified name is:  

■  The result of a local alias lookup 

■  A name formed by appending the DNR search list strings to a partially 
qualified domain name 

■  DNS alias referral  

Default: Zero (no qualified name storage area).  

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated when 
the request completes reflecting the actual length of the fully-qualified name 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to the 
start of a valid storage area.  

Default: Zero (no qualified name returned).  

2–34     Assembler API Programmer Reference 



GET-HOST-BYALIAS 

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information. Since portions of the distributed database are maintained on other 
systems, queries must sometimes be transmitted to remote destinations. The 
responses to such queries may contain referrals to other remote systems. 
Therefore, some types of directory requests may take an arbitrary amount of 
time to complete.  

You can use this operand to limit the amount of time spent searching for 
specific information. If the directory search is abandoned because the time 
limit was exceeded, DETIMOUT error code is returned the application 
program.  

Note: TIME is only applicable if OPTCD=GLOBAL.  

Default: Zero (use MAXTIME limit in DNRCFG00). 

OPTCD =  
SYNC | ASYNC  

Synchronization mode to use when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and control is 
returned to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

DNR Directory Services    2–35 



GET-HOST-BYALIAS 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately available.  

OPTCD=BLOCK processing continues in accordance with the synchronization 
mode selected (OPTCD=SYNC | ASYNC). 

 

OPTCD=NOBLOCK the request completes abnormally and the specific error 
code is set to DENOBLOK indicating that the request could not be completed 
immediately. OPTCD=NOBLOCK is generally used in conjunction with 
OPTCD=SYNC to prevent suspension of the issuing task for an extended 
period.  

Note: The issuing task may be momentarily suspended to let the DNR address 
space process the request. If the application program cannot afford to be 
suspended, even for a very small amount of time, then the request must be 
executed asynchronously (OPTCD=ASYNC).  

OPTCD=BLOCK|NOBLOCK is only applicable if OPTCD=GLOBAL. This 
option code affects disposition of a request after it is accepted by the DNR.  

Default: BLOCK (suspend task indefinitely).  

OPTCD =  
LOCAL | GLOBAL  

Scope of the directory search. 

OPTCD=LOCAL only the locally-maintained database is searched. 

OPTCD=GLOBAL the distributed database is searched, and queries for the 
requested information are sent to remote destinations as required.  

If this option is specified, and access to the network is disabled or inoperative, 
or no distributed nodes are configured, the request proceeds as if 
OPTCD=LOCAL was specified. 

Default: GLOBAL (global scope). 

2–36     Assembler API Programmer Reference 



GET-HOST-BYALIAS 

OPTCD =  
COPY | ORIGINAL  

Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned.  

OPTCD=COPY a local copy of the requested information is used to satisfy the 
request. Specifying OPTCD=COPY lets information gotten as the result of a 
previous request be reused and returned to the application program, thus 
avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL the information must be gotten from its original, 
authoritative source. Specifying OPTCD=ORIGINAL assures that the most 
current information is returned. 

Note: OPTCD=COPY|ORIGINAL is only applicable if OPTCD=GLOBAL.  

Default: COPY (use copy of original data).  

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

If the option is: 

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT= exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged for processing as if ECB=INTERNAL was specified, and the ECB-EXIT 
field is used as an internal ECB that is waited on and cleared automatically 
before returning control to the application program. 

Default: INTERNAL (internal ECB).  

DNR Directory Services    2–37 



GET-HOST-BYALIAS 

EXIT = 
exit_routine_address 

Address of a routine to schedule when the request completes.  

The EXIT and ECB operands share the same storage location in the parameter 
list and are mutually exclusive. The completion exit is scheduled only if 
asynchronous mode is indicated by OPTCD=ASYNC.  

If synchronous mode is indicated, the exit routine is not used. If one is 
specified with this operand, the address is overwritten with an internal ECB 
before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | 
E,  
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction.  

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used.  

Note: It is recommended that you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set.  

2–38     Assembler API Programmer Reference 



GET-HOST-BYALIAS 

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

If the fully-qualified search string did not conform to the syntactic rules 
described in Syntactic Rules for Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request (that is, the search string is not an alias but an actual host 
name) the DNR returns an error code of DENODATA. The fully-qualified search 
string is the result of a fully-qualified name given in the NABUF storage area, a 
local alias lookup, a name formed by appending the DNR search list strings to a 
partially qualified domain name, or a DNS alias referral.  

Return Codes 

The following table lists the symbolic return codes for the GET-HOST-BYALIAS 
macro. The values associated with the symbolic names can be found in the DPL 
macro expansion. 
 

General 
Return Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY 
DCLOCAL 

DCALIAS DCOVRFLO 

DRFAILED DAEXCPTN DENONAME 
DETIMOUT 
DENOCDS 
DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE 

DENOQNAMDENOTFND 
DEOVRFLO DENAMODE  

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL 
DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB DEBDVALU 

DNR Directory Services    2–39 



GET-HOST-BYALIAS 

General 
Return Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Usage Information 

The GET-HOST-BYALIAS instance of the DIRSRV macro is used to get a fully-
qualified domain name given an alias. 

■  If OPTCD=LOCAL, the DNR returns information received from the alias 
configuration member (DNRALCxx) 

■  If OPTCD=GLOBAL, the DNR returns information received from Domain 
Name System Canonical (CNAME) records  

Example This example shows the use of GET-HOST-BYALIAS, OPTCD=LOCAL. The 
request is to find a fully-qualified domain name for the subsystem name ACSS.  

The alias configuration member (DNRALCxx) contains:  

ACSS ZEUS.ACC.COM.  

The application supplies this DIRSRV information: 

NABUF = (address of:)  
 

C S S            
 

NALEN = 4  
VABUF = (address of:)  
 

                            

VALEN = 100  

2–40     Assembler API Programmer Reference 



GET-NETWORK-BYNAME 

This information is returned:  

NABUF = (address of:) 
 

C S S            

NALEN = 4  
VABUF = (address of:)  
 

E U S . A C C . C O M .   

VALEN = 13  

GET-NETWORK-BYNAME 
The GET-NETWORK-BYNAME instance of the DIRSRV macro instruction is 
used to return a network number when its name is known. The information 
returned is obtained locally from the network configuration member 
(DNRNETxx).  

[ symbol ] DIRSRV GET,NETWORK,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,OPTCD = SYNC | ASYNC ]  
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ]  
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,NETWORK, 
BYNAME  

DNR searches for and returns a network number associated with the network 
name provided by the application program.  

NABUF = name_address  Address of a storage area  in which the application program places the name of 
a network. All names must conform to the syntactic rules described in 
Syntactic Rules for Names.  

Default: Zero (no name storage area).  

DNR Directory Services    2–41 



GET-NETWORK-BYNAME 

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand. 

The maximum length of a local network name is 40 bytes. A length of zero is 
invalid.  

Default: Zero (no name provided or returned). 

VABUF = value_address  Address of a storage area in which DNR returns a network number associated 
with the named network.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. The 
length is updated when the request completes reflecting the actual amount of 
information returned.  

If the request completes normally, the length is updated to a value from one to 
three. 

If the request completes abnormally, no information is returned and the length 
remains unchanged.  

Default: Zero (no value returned).  

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used. 

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

2–42     Assembler API Programmer Reference 



GET-NETWORK-BYNAME 

OPTCD =  
SYNC | ASYNC  

Synchronization mode to use when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and control is 
returned to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are mutually exclusive operands. If 
asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of the 
DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT= exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text.  

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged and will be processed as if ECB=INTERNAL was specified, and the 
ECB-EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

DNR Directory Services    2–43 



GET-NETWORK-BYNAME 

EXIT = 
exit_routine_address 

Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive. 

The completion exit is scheduled only if asynchronous mode was indicated by 
OPTCD=ASYNC. If synchronous mode was indicated, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction.  

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

2–44     Assembler API Programmer Reference 



GET-NETWORK-BYNAME 

Return Codes 

The following table lists the symbolic return codes for the GET-NETWORK-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General Return 
Code 

Recovery 
Action Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY   

DRFAILED DAEXCPTN DENONAMEDENOCDS 
DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-NETWORK-BYNAME. The request is to 
find the network number for the name ARPANET.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 
A R P A N E T          

NALEN = 7  
VABUF = (address of:)  
 

                              

VALEN = 100  

DNR Directory Services    2–45 



GET-NETWORK-BYVALUE 

This information is returned:  

NABUF = (address of:) 
 
A R P A N E T          

NALEN = 7  
VABUF = (address of:)  
 
10                

VALEN = 1  

GET-NETWORK-BYVALUE  
The GET-NETWORK-BYVALUE instance of the DIRSRV macro instruction is 
used to return a network name when its value is known. The information 
returned is obtained locally from the network configuration member 
(DNRNETxx).  

[ symbol ] DIRSRV GET,NETWORK,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,OPTCD = SYNC | ASYNC ]  
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ]  
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,NETWORK,BYVALUE  DNR searches for and returns a network name associated with the 
network number provided by the application program.  

NABUF = name_address  

The address of a storage area in which the DNR returns the name of 
a network.  

Default: Zero (no name storage area).  

2–46     Assembler API Programmer Reference 



GET-NETWORK-BYVALUE 

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF 
operand.  

The length is updated when the request completes reflecting the 
actual amount of information returned. If the request completes 
abnormally, no information is returned and the length remains 
unchanged.  

Default: Zero (no value returned).  

VABUF = value_address  Address of a storage area  in which the application program places 
a network number.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the network number located in the storage area 
identified by the VABUF operand.  

This number should be one to three (bytes). A length of zero is 
invalid.  

Default: Zero (no value returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally 
this operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four 
characters in length.  

Note: If more than one DNR subsystem is active on the local 
system, the particular subsystem that will process this request must 
be specified.  

Default: Not indicated (use installation default).  

DNR Directory Services    2–47 



GET-NETWORK-BYVALUE 

OPTCD = SYNC | ASYNC  Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and 
control is not returned to the application program until the 
requested macro instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and 
control is returned to the application program immediately after it 
is accepted by DNR. The application program is notified 
asynchronously when the request completes.  

Note: The ECB and EXIT operands determine the form of 
asynchronous notification. 

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the 
directory request completes. The ECB can be any fullword of 
storage aligned on a fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are therefore mutually 
exclusive operands.  

If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT 
field of the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of 
an external ECB. The application program is responsible for issuing 
a WAIT macro instruction and clearing the ECB when posted.  

If EXIT= exit_routine_address is specified, DNR uses the field as the 
address of an exit routine, and schedules the routine as indicated in 
the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The 
application program is responsible for issuing a WAIT macro 
instruction specifying the internal ECB, but need not clear it when 
posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the 
parameter list is flagged for processing as if ECB=INTERNAL was 
specified, and the ECB-EXIT field is used as an internal ECB that is 
waited on and cleared automatically before returning control to the 
application program. 

Default: INTERNAL (internal ECB).  

2–48     Assembler API Programmer Reference 



GET-NETWORK-BYVALUE 

EXIT = exit_routine_address Address of a routine to schedule when the request completes. The 
EXIT and ECB operands share the same storage location in the 
parameter list and are therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode was 
specified by OPTCD=ASYNC. If synchronous mode was indicated, 
the exit routine is not used. If one is specified with this operand, the 
address is overwritten with an internal ECB before the request 
completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the 
DIRSRV macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, 
the standard form is used.  

Note: It is recommended you use the list form of the macro to 
ensure DPL alignment on a full word boundary. If you do not use 
the list form, make sure you align the storage area used for the 
remote parameter list on a fullword boundary. This ensures that the 
internal ECB is aligned on a fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

DNR Directory Services    2–49 



GET-NETWORK-BYVALUE 

Return Codes 

The following table lists the symbolic return codes for the GET-NETWORK-
BYVALUE macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery 
Action Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY   

DRFAILED DAEXCPTN DENONAME DENOCDS 
DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-NETWORK-BYVALUE. The request is to 
find the network name for 10.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 

                            

NALEN = 100  

VABUF = (address of:)  
 

              

VALEN = 1 

2–50     Assembler API Programmer Reference 



GET-PROTOCOL-BYNAME 

This information is returned:   

NABUF = (address of:)  
 

R P A N E T         

NALEN = 7  

VABUF = (address of:)  
 

              

VALEN = 1  

GET-PROTOCOL-BYNAME  
The GET-PROTOCOL-BYNAME instance of the DIRSRV macro instruction is 
used to get a protocol number when its name is known. The information 
returned is obtained locally from the protocol configuration member 
(DNRPRTxx).  

[ symbol ] DIRSRV GET,PROTOCOL,BYNAME, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ]  
                  [ ,OPTCD = SYNC | ASYNC ]  
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ]  

GET,PROTOCOL, 
BYNAME  

DNR searches for and returns a protocol number associated with the protocol 
name provided by the application program.  

NABUF = name_address  Address of a storage area in which the application program has placed a 
protocol name. All names must conform to the syntactic rules described in 
Syntactic Rules for Names.  

Default: Zero (no name storage area).  

DNR Directory Services    2–51 



GET-PROTOCOL-BYNAME 

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of a protocol name is 40 bytes. A length of zero is 
invalid.  

Default: Zero (no name provided).  

VABUF = value_address  Address of a storage area in which DNR returns a protocol number associated 
with the named protocol.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. The 
length is updated when the request completes reflecting the actual amount of 
information returned. 

If the request completes normally, the length is updated to a value from one to 
three. 

If the request completes abnormally, no information is returned and the length 
remains unchanged.  

Default: Zero (no value returned).  

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

2–52     Assembler API Programmer Reference 



GET-PROTOCOL-BYNAME 

OPTCD = SYNC | ASYNC  Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT= exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged for processing as if ECB=INTERNAL was specified, and the ECB-EXIT 
field is used as an internal ECB that is waited on and cleared automatically 
before returning control to the application program. 

Default: INTERNAL (internal ECB).  

DNR Directory Services    2–53 



GET-PROTOCOL-BYNAME 

EXIT=exit_routine_address Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified by 
OPTCD=ASYNC. If synchronous mode is indicated, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E,  
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction. The second sublist operand, dpl_address, specifies the address of 
the parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated 

2–54     Assembler API Programmer Reference 



GET-PROTOCOL-BYNAME 

Return Codes 

The following table lists the symbolic return codes for the GET-PROTOCOL-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General Return 
Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY   

DRFAILED DAEXCPTN DENONAMEDENOCD
S DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-PROTOCOL-BYNAME. The request is to 
find the protocol number of TCP.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 

C P             

NALEN = 3  
VABUF = (address of:) 
 

                            

VALEN = 100 

This information is returned:  

NABUF = (address of:) 
 

C P             

DNR Directory Services    2–55 



GET-PROTOCOL-BYVALUE 

NALEN = 3  
VABUF = (address of:) 
 

              

VALEN = 1 

GET-PROTOCOL-BYVALUE 
The GET-PROTOCOL-BYVALUE instance of the DIRSRV macro instruction is 
used to return a protocol name when its official protocol number is known. The 
information returned is obtained locally from the protocol configuration member 
(DNRPRTxx).  

[ symbol ] DIRSRV GET,PROTOCOL,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length,  
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,SIZE = size_limit ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ]  

GET,PROTOCOL,BYVALUE  DNR searches for and returns a protocol name associated with the 
protocol number provided by the application program.  

NABUF = name_address  Address of a storage area in which the DNR returns a protocol name 
associated with the protocol number contained in the storage area 
indicated by the VABUF and VALEN operands.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF 
operand.  

The length is updated when the request completes reflecting the 
actual amount of information returned. If the request completes 
abnormally, no information is returned and the length remains 
unchanged. A length of zero is invalid.  

Default: Zero (no name provided or returned). 

2–56     Assembler API Programmer Reference 



GET-PROTOCOL-BYVALUE 

VABUF = value_address  Address of a storage area in which the application program has 
placed a protocol number.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the protocol number located in the storage area 
identified by the VABUF operand. 

This number should be one (byte). A length of zero is invalid.  

Default: Zero (no value returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this 
operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four 
characters in length. 

Note: If more than one DNR subsystem is active on the local system, 
the particular subsystem that will process this request must be 
specified.   

Default: Not indicated (use installation default).  

SIZE = size_limit  Limit on the amount of information returned. The ultimate limit is 
determined by the length of the storage area provided to receive the 
returned values.  

However, for those requests that may return lists or an array of 
values, this operand limits the number of elements returned. A value 
of zero indicates there is no limit (other than the size of the storage 
area provided).  

Default: Zero (no size limit). 

DNR Directory Services    2–57 



GET-PROTOCOL-BYVALUE 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the 
directory request completes. The ECB can be any fullword of storage 
aligned on a fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are therefore mutually 
exclusive operands. If asynchronous mode is specified 
(OPTCD=ASYNC), the ECB-EXIT field of the DPL (DPLECBXR) is 
used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a 
WAIT macro instruction and clearing the ECB when posted. If EXIT= 
exit_routine_address is specified, DNR uses the field as the address of 
an exit routine, and schedules the routine as indicated in the 
following EXIT operand. 

ECB=INTERNAL DNR uses the field as an internal ECB. The 
application program is responsible for issuing a WAIT macro 
instruction specifying the internal ECB, but need not clear it when 
posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the 
parameter list is flagged for processing as if ECB=INTERNAL was 
specified, and the ECB-EXIT field is used as an internal ECB that is 
waited on and cleared automatically before returning control to the 
application program. 

Default: INTERNAL (internal ECB).  

EXIT=exit_routine_address Address of a routine to schedule when the request completes.  

The EXIT and ECB operands share the same storage location in the 
parameter list and are therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode was 
specified by OPTCD=ASYNC. If synchronous mode is specified, the 
exit routine is not used. If one is specified with this operand, the 
address is overwritten with an internal ECB before the request 
completes. 

Default: Not indicated (no exit routine).  

2–58     Assembler API Programmer Reference 



GET-PROTOCOL-BYVALUE 

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the 
DIRSRV macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, 
the standard form is used.  

Note:  It is recommended you use the list form of the macro to 
ensure DPL alignment on a full word boundary. If you do not use the 
list form, make sure you align the storage area used for the remote 
parameter list on a fullword boundary. This ensures that the internal 
ECB is aligned on a fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

DNR Directory Services    2–59 



GET-PROTOCOL-BYVALUE 

Return Codes 

The following table lists the symbolic return codes for the GET-PROTOCOL-
BYVALUE macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery 
Action Code 

Conditional or Specific Error Code 

DROKAY DAOKAY DCOKAY 

DRFAILED DAEXCPTN DENONAME 
DENOCDS 
DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL 
DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR  DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-PROTOCOL-BYVALUE. The request is to 
find a protocol name for the protocol number six. The application supplies this 
DIRSRV information:  

NABUF = (address of:)  
 

                            

NALEN = 100  
VABUF = (address of:)  
 

              

VALEN = 1  

2–60     Assembler API Programmer Reference 



GET-SERVICE-BYNAME 

This information is returned:  

NABUF = (address of:) 
 

C P             

NALEN = 3  
VABUF = (address of:)  
 

              

VALEN = 1  

GET-SERVICE-BYNAME 
The GET-SERVICE-BYNAME instance of the DIRSRV macro instruction is used 
to return a port number when its name is known. The information returned is 
obtained locally from the services configuration member (DNRSVCxx).  

[ symbol ] DIRSRV GET,SERVICE,BYNAME, 
                  NABUF = name_address,  
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,SERVICE,BYNAME  DNR searches for and returns a service port number associated with the 
protocol/service pair provided by the application program.  

NABUF = name_address  Address of a storage area in which the application program placed the 
protocol/service name pairs.  

The protocol/service names should be separated by a slash (/). All names 
must conform to the syntactic rules described in Syntactic Rules for Names. 

Default: Zero (no name storage area).  

DNR Directory Services    2–61 



GET-SERVICE-BYNAME 

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of a local protocol or service name is 40 bytes. A length 
of zero is invalid.  

Default: Zero (no name provided or returned). 

VABUF = value_address  Address of a storage area in which DNR returns a service number associated 
with the named protocol/service pair.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. The 
length is updated when the request completes reflecting the actual amount of 
information returned. 

If the request completes normally, the length is updated to a value from one to 
three. 

If the request completes abnormally, no information is returned and the length 
remains unchanged.  

Default: Zero (no value returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length.  

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

2–62     Assembler API Programmer Reference 



GET-SERVICE-BYNAME 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If is specified, DNR uses the 
field as the address of an exit routine, and schedules the routine as indicated in 
the following EXIT operand. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged for processing as if ECB=INTERNAL was specified, and the ECB-EXIT 
field is used as an internal ECB that is waited on and cleared automatically 
before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT=exit_routine_address Address of a routine to schedule when the request completes. 

The EXIT and ECB operands share the same storage location in the parameter 
list and are therefore mutually exclusive. The completion exit is scheduled 
only if asynchronous mode was specified by OPTCD=ASYNC. 

If synchronous mode is specified, the exit routine is not used. If one is specified 
with this operand, the address is overwritten with an internal ECB before the 
request completes. 

Default: Not indicated (no exit routine).  

DNR Directory Services    2–63 



GET-SERVICE-BYNAME 

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction. 

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the DIRSRV macro 
instruction completes abnormally, no information is returned in the storage area 
and the storage area length is unmodified. The general return code in register 15 
and the recovery action code indicate the nature of the failure 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

2–64     Assembler API Programmer Reference 



GET-SERVICE-BYNAME 

Return Codes 

The following table lists the symbolic return codes for the GET-SERVICE-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY   

DRFAILED DAEXCPTN DENONAME DENOCDS 
DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-SERVICE-BYNAME. The request is to return 
a service number for the name TCP/DISCARD.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 

C P / D I S C A R D     

NALEN = 11 
VABUF = (address of:)  
 

                            

VALEN = 100  

DNR Directory Services    2–65 



GET-SERVICE-BYVALUE 

This information is returned:  

NABUF = (address of:) 
 

C P / D I S C A R D     

NALEN = 11  
VABUF = (address of:) 
 

              

VALEN = 1  

GET-SERVICE-BYVALUE 
The GET-SERVICE-BYVALUE instance of the DIRSRV macro instruction is used 
to return a protocol and service name pair when a service number is known. The 
information returned is obtained locally from the service configuration member 
(DNRSRVxx).  

[ symbol ] DIRSRV GET,SERVICE,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address,  
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,SIZE = size_limit ]  
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address_] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,SERVICE, 
BYVALUE  

DNR searches for and returns a list of protocol and service name pairs 
associated with the service port number provided by the application program.  

NABUF = name_address  Address of a storage area in which the DNR returns a list of protocol and 
service name pairs. 

The protocol and service name entries are separated by a slash (/). Each entry 
in the list is separated by a space character. The number of entries returned is 
returned in the SIZE operand.  

Default: Zero (no name storage area).  

2–66     Assembler API Programmer Reference 



GET-SERVICE-BYVALUE 

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF operand.  

The length is updated when the request completes reflecting the actual amount 
of information returned. If the request completes abnormally, no information 
is returned and the length remains unchanged.  

Default: Zero (no value returned).  

VABUF = value_address  Address of a storage area in which the application program has placed a 
service port number.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the port number located in the storage area identified by 
the VABUF operand.  

This number should be two (bytes). A length of zero is invalid.  

Default: Zero (no value returned).  

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

SIZE = size_limit  Limit of the number of protocol and service name pairs returned. 

A value of zero in the request, indicates there is no limit and the DNR is to 
return all name pairs associated with the port number. If the return 
information will not fit in the storage area provided or if the application 
program specifies a limit less than the defined number of protocol and service 
name pairs, the DCMORE conditional completion code is returned.  

Default: Zero (no size limit).  

DNR Directory Services    2–67 



GET-SERVICE-BYVALUE 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT=exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged to be processed as if ECB=INTERNAL had been specified, and the 
ECB-EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT= 
exit_routine_address 

Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive. The completion exit is scheduled only if 
asynchronous mode is specified by OPTCD=ASYNC. 

If synchronous mode was specified, the exit routine is not used. If one is 
specified with this operand, the address is overwritten with an internal ECB 
before the request completes. 

Default: Not indicated (no exit routine).  

2–68     Assembler API Programmer Reference 



GET-SERVICE-BYVALUE 

MF = ( I | L | G | M | 
E, [ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction.  

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used. 

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. If the application 
program specified a SIZE limit less than the defined number of entries for the 
given host, or if the entire list of return information will not fit in the storage area 
provided, the DCMORE conditional completion code is returned. 

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

DNR Directory Services    2–69 



GET-SERVICE-BYVALUE 

Return Codes 

The following table lists the symbolic return codes for the GET-SERVICE-
BYVALUE macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery 
Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY   

DRFAILED DAEXCPTN DENONAME DENOCDS 
DEVAMODE 

DENOVALU 
DEOVRFLO 

DENOTFND 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

Example This example shows the use of GET-SERVICE-BYVALUE. The request is to find 
the protocol and service name pair for the service port number 9. 

The application supplies this DIRSRV information: 

NABUF = (address of:)  
 

                            

NALEN = 100 
VABUF = (address of:) 
 

              

VALEN = 1  

This information is returned:  

NABUF = (address of:) 
 

C P / D I S C A R D  U D P 

2–70     Assembler API Programmer Reference 



GET-HOSTINFO-BYNAME 

I S C A R D         

NALEN = 23  
VABUF = (address of:) 
 

              

VALEN = 1  

GET-HOSTINFO-BYNAME  
The GET-HOSTINFO-BYNAME instance of the DIRSRV macro instruction is 
used to return CPU and operating system information for a given host when its 
name is known. The name provided may be a local alias or a partial or fully-
qualified domain name. The information returned is obtained globally from the 
Internet Domain Name System (DNS).  

[ symbol ] DIRSRV GET,HOSTINFO,BYNAME, 
                  NABUF = name_address,  
                  NALEN = name_length, 
                  VABUF = value_address,  
                  VALEN = value_length  
                  [ ,QNBUF = qualified_name_address ]  
                  [ ,QNLEN = qualified_name_length ]  
                  [ ,SYSID = MVS_subsystem_id ]  
                  [ ,TIME = time_limit ] 
                  [ ,OPTCD = ( [ SYNC | ASYNC ] 
                               [ ,BLOCK | NOBLOCK ] 
                               [ ,COPY | ORIGINAL ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 
 

DNR Directory Services    2–71 



GET-HOSTINFO-BYNAME 

GET,HOSTINFO,BYNAME  DNR searches for and returns CPU and operating system information 
associated with the host name or alias provided by the application program. 

NABUF = name_address  Address of a storage area in which the application program has placed the 
name of a host.  

The name may be a local alias defined in the alias configuration member 
(DNRALCxx) or an Internet domain name or alias name defined by the DNS. 
Internet domain names may be partially or fully-qualified. All names must 
conform to the syntactic rules described in Syntactic Rules for Names.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of a fully-qualified domain name is 255 bytes. The 
maximum length of a local alias name is 40 bytes. A length of zero is invalid.  

Default: Zero (no name provided).  

VABUF = value_address  Address of a storage area in which DNR returns the CPU and operating 
system information.  

The strings are EBCIDIC strings separated by a space character.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand.  

The length is updated when the request completes reflecting the actual amount 
of information returned. If the request completes abnormally, no information 
is returned and the length remains unchanged.  

Default: Zero (no value returned).  

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified name used 
to search for the requested information.  

The fully-qualified name is either the result of a local alias lookup, a name 
formed by appending the DNR search list strings to a partially qualified 
domain name, or a DNS alias referral.  

Default: Zero (no qualified name storage area).  

2–72     Assembler API Programmer Reference 



GET-HOSTINFO-BYNAME 

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated when 
the request completes reflecting the actual length of the fully-qualified name 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to the 
start of a valid storage area.  

Default: Zero (no qualified name returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information.  

Since portions of the distributed database are maintained on other systems, 
queries must sometimes be transmitted to remote destinations. Also, the 
responses to such queries may contain referrals to other remote systems. 
Therefore, some types of directory requests may take an arbitrary amount of 
time to complete.  

You can use this operand to limit the amount of time spent searching for 
specific information. If the directory search is abandoned because the time 
limit was exceeded, DETIMOUT error code is returned the application 
program.  

Default: Zero (use MAXTIME limit in DNRCFG00). 

DNR Directory Services    2–73 



GET-HOSTINFO-BYNAME 

OPTCD = SYNC | ASYNC  Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately available. 

OPTCD=BLOCK processing continues in accordance with the synchronization 
mode selected (OPTCD=SYNC | ASYNC). This option affects disposition of a 
request after it is accepted by the DNR. 

OPTCD=NOBLOCK the request is completed abnormally and the specific 
error code is set to DENOBLOK indicating that the request could not be 
completed immediately. OPTCD=NOBLOCK is generally used in conjunction 
with OPTCD=SYNC to prevent suspension of the issuing task for an extended 
period.  

Note: The issuing task may be momentarily suspended to let the DNR address 
space process the request. If the application program cannot afford to be 
suspended, even for a very small amount of time, then the request must be 
executed asynchronously (OPTCD=ASYNC).  

Default: BLOCK (suspend task indefinitely).  

OPTCD =  
COPY | ORIGINAL  

Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned. 

OPTCD=COPY a local copy of the requested information may be used to 
satisfy the request. Specifying OPTCD=COPY lets information returned as the 
result of a previous request be reused and returned to the application 
program, thus avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL the information must be returned from its original, 
authoritative source. Specifying OPTCD=ORIGINAL assures that the most 
current information is returned. 

Default: COPY (use copy of original data).  

2–74     Assembler API Programmer Reference 



GET-HOSTINFO-BYNAME 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT=exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged for processing as if ECB=INTERNAL was specified, and the ECB-EXIT 
field is used as an internal ECB that is waited on and cleared automatically 
before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT=exit_routine_address Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified by 
OPTCD=ASYNC. If synchronous mode was indicated, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

DNR Directory Services    2–75 



GET-HOSTINFO-BYNAME 

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction.  

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set.  

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

2–76     Assembler API Programmer Reference 



Return Codes 

If the fully-qualified search string did not conform to the syntactic rules 
described in Syntactic Rules for Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request, the DNR returns an error code of DENODATA. The fully-
qualified search string is the result of a fully-qualified name given in the NABUF 
storage area, a local alias lookup, a name formed by appending the DNR search 
list strings to a partially qualified domain name, or a DNS alias referral.  

Return Codes 
The following table lists the symbolic return codes for the GET-HOSTINFO-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return 
Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY DCALIAS DCOVRFLO 

DRFAILED DAEXCPTN DENONAMEDETIMOUT 
DENOCDS DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE  

DENOQNAMDE
NOTFND 
DEOVRFLO 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

DNR Directory Services    2–77 



Return Codes 

Usage Information 

The GET-HOSTINFO-BYNAME instance of the DIRSRV macro is used by application programs to 
return CPU and operating system information. The DNR returns information received from DNS Host 
Information (HINFO) records. HINFO records specify the data returned by the DNR.  

Example This example shows the use of GET-HOSTINFO-BYNAME. The request is to 
return CPU and operating system information about UNIX.  

The alias configuration member (DNRALCxx) contains: 

ACSS ZEUS.ACC.COM. 
UNIX SALT. 

The application supplies this DIRSRV information: 

NABUF = (address of:) 
 

N I X            

NALEN = 4  
VABUF = (address of:)  
 

                            

VALEN = 100  
QNBUF = (address of:)  
 

                            

QNLEN = 100  

This information is returned:  

NABUF = (address of:) 
 

N I X            

NALEN = 4  
VABUF = (address of:) 
 

A X - 1 1 / 7 8 5  U N I X 

2–78     Assembler API Programmer Reference 



GET-HOSTSERV-BYNAME 

VALEN = 15 
QNBUF = (address of 
 

A L T . A C C . C O M .   

QNLEN = 13  

SALT.ACC.COM. was used to search the directory because UNIX was found as 
an alias in the alias configuration member. Because the replacement string, 
SALT, was partially qualified, the search list strings were appended to SALT.  

ACC.COM. was included in the search list because the subsystem name ACSS is 
included in the alias configuration member. The DNR received a DNS response 
for SALT.ACC.COM. and returned the information to the application program. 

GET-HOSTSERV-BYNAME  
The GET-HOSTSERV-BYNAME instance of the DIRSRV macro instruction is 
used to return a list of well-known service supported by a host. The name 
provided may be a local alias or a partial or fully-qualified domain name. The 
information returned is obtained globally from the Internet Domain Name 
System (DNS).  

[ symbol ] DIRSRV GET,HOSTSERV,BYNAME, 
                  NABUF = name_address,  
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length 
                  [ ,QNBUF=qualified_name_address ] 
                  [ ,QNLEN=qualified_name_length ]  
                  [ ,SYSID=MVS_subsystem_id ] 
                  [ ,TIME=time_limit ] 
                  [ ,SIZE=size_limit ] 
                  [ ,OPTCD = ( [ SYNC | ASYNC ] 
                               [ ,BLOCK | NOBLOCK ]  
                               [ ,COPY | ORIGINAL ] ) ]  
                  [ ,ECB = INTERNAL | event_control_block_addr ]  
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 
 

DNR Directory Services    2–79 



GET-HOSTSERV-BYNAME 

GET,HOSTSERV,BYNAME  DNR searches for and returns a list of well-known services supported by the 
host name or alias provided by the application program.  

NABUF = name_address  Address of a storage area in which the application program has placed the 
name of a host.  

The name may be a local alias defined in the alias configuration member 
(DNRALCxx) or an Internet domain name or alias name defined by the DNS. 
Internet domain names may be partially or fully qualified. All names must 
conform to the syntactic rules described in Syntactic Rules for Names.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of a fully-qualified domain name is 255 bytes. The 
maximum length of a local alias name is 40 bytes. A length of zero is invalid.  

Default: Zero (no name provided).  

VABUF = value_address  Address of a storage area in which DNR returns a list of well-known services 
supported by the host.  

The list contains a four-byte Internet address followed by a two-byte protocol 
number, a two-byte integer indicating the number of ports supported, 
followed by an array of two-byte ports.  

The array size is indicated by the two-byte number proceeding the array. Each 
entry describes the well-known services supported by a particular protocol on 
a particular internet address.  

The number of entries is the smaller of the total number defined for the host, 
the length of the storage area available, or the number indicated by the SIZE 
operand.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand. The 
length is updated when the request completes reflecting the actual amount of 
information returned. If the request completes abnormally, no information is 
returned and the length remains unchanged.  

Default: Zero (no value returned).  

2–80     Assembler API Programmer Reference 



GET-HOSTSERV-BYNAME 

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified name used 
to search for the requested information.  

The fully-qualified name is either the result of a local alias lookup, a name 
formed by appending the DNR search list strings to a partially qualified 
domain name, or a DNS alias referral.  

Default: Zero (no qualified name storage area).  

QNLEN = qualified_name_length  Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated when 
the request completes reflecting the actual length of the fully-qualified name 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to the 
start of a valid storage area.  

Default: Zero (no qualified name returned).  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

TIME = time_limit  Maximum amount of elapsed time (in seconds) to find the requested 
information.  

Since portions of the distributed database are maintained on other systems, 
queries must sometimes be transmitted to remote destinations. Also, the 
responses to such queries may contain referrals to other remote systems. 
Therefore, some types of directory requests may take an arbitrary amount of 
time to complete.  

You can use this operand to limit the amount of time spent searching for 
specific information. If the directory search is abandoned because the time 
limit was exceeded, a DETIMOUT error code is returned to the application 
program.  

Default: Zero (use MAXTIME limit in DNRCFG00).  

DNR Directory Services    2–81 



GET-HOSTSERV-BYNAME 

SIZE = size_limit  Limit of the number of entries returned.  

A value of zero in the request, indicates there is no limit and the DNR is to 
return all entries associated with the domain name. If the return information 
will not fit in the storage area provided or if the application program specifies 
a limit less than the defined number of entries for the given host, the DCMORE 
conditional completion code is returned.  

Default: Zero (no size limit). 

OPTCD = SYNC | ASYNC  Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately available.  

OPTCD=BLOCK processing continues in accordance with the synchronization 
mode selected (OPTCD=SYNC | ASYNC). This option code affects disposition 
of a request after it is accepted by the DNR. 

OPTCD=NOBLOCK the request completes abnormally and the specific error 
code is set to DENOBLOK indicating that the request could not be completed 
immediately.  

OPTCD=NOBLOCK is generally used in conjunction with OPTCD=SYNC to 
prevent suspension of the issuing task for an extended period.  

Note: The issuing task may be momentarily suspended to let the DNR address 
space process the request. If the application program cannot afford to be 
suspended, even for a very small amount of time, then the request must be 
executed asynchronously (OPTCD=ASYNC).  

Default: BLOCK (suspend task indefinitely). 

2–82     Assembler API Programmer Reference 



GET-HOSTSERV-BYNAME 

OPTCD = COPY | ORIGINAL  Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned.   

OPTCD=COPY a local copy of the requested information may be used to 
satisfy the request. Specifying OPTCD=COPY lets information returned as the 
result of a previous request be reused and returned to the application 
program, thus avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL the information must be returned from its original, 
authoritative source. Specifying OPTCD=ORIGINAL assures that the most 
current information is returned. 

Default: COPY (use copy of original data).  

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT=exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged to be processed as if ECB=INTERNAL was specified, and the ECB-
EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

DNR Directory Services    2–83 



GET-HOSTSERV-BYNAME 

EXIT=exit_routine_address Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified by 
OPTCD=ASYNC. If synchronous mode is indicated, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction. The second sublist operand, dpl_address, specifies the address of 
the parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set. If the application program specified a 
SIZE limit less than the defined number of entries for the given host, or if the 
entire list of return information will not fit in the storage area provided, the 
DCMORE conditional completion code is returned. 

2–84     Assembler API Programmer Reference 



GET-HOSTSERV-BYNAME 

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated 

If the fully-qualified search string did not conform to the syntactic rules 
described in Syntactic Rules for Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request, the DNR returns an error code of DENODATA. The fully-
qualified search string is the result of a fully-qualified name given in the NABUF 
storage area, a local alias lookup, a name formed by appending the DNR search 
list strings to a partially qualified domain name, or a DNS alias referral.  

Return Codes 

The following table lists the symbolic return codes for the GET-HOSTSERV-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY DCOVRFLO DCMORE DCALIAS 

DRFAILED DAEXCPTN DENONAME DETIMOUT 
DENOCDS DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE 

DENOQNAM 
DENOTFND 
DEOVRFLO 
DENAMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

DNR Directory Services    2–85 



GET-HOSTSERV-BYNAME 

Usage Information 

The GET-HOSTSERV-BYNAME instance of the DIRSRV macro is used by 
application programs to determine the services supported by a given Internet 
domain name. The DNR returns information received from DNS  Well Known 
Services (WKS) records. WKS records specify the well-known services supported 
by a particular protocol on a particular internet address. The two-byte protocol 
number returned in an entry may be used as input in a DIRSRV GET-
PROTOCOL-BYVALUE request to return the associated protocol name. 
Likewise, the two byte port numbers may be used as input in a DIRSRV GET-
SERVICE-BYVALUE request to obtain the associated service names.  

Example This example shows the use of GET-HOSTSERV-BYNAME. The request is to 
find the list of well-known services supported by host TERP.UMD.EDU.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 

E R P . U M D . E D U    

NALEN = 12  
VABUF = (address of:) 
 

                            

VALEN = 100  
QNBUF = (address of:) 
 

                            

QNLEN = 100  
SIZE = 100 

2–86     Assembler API Programmer Reference 



GET-HOSTSERV-BYNAME 

This information is returned:  

NABUF = (address of:)  
 

E R P . U M D . E D U .   

NALEN = 13 
VABUF = (address of:)  
 

0x08 0x0a 0x5a  17  2  53  

0x08 0x0a 0x5a  6  3  21  

25          

VALEN = 26  
QNBUF = (address of:)  
 

                            

QNLEN = 100 
SIZE = 2  

The response information indicates that the Internet address 128.8.10.90 
(0x80080a5a) supports two UDP (17) well-known services DOMAIN (53) and 
NTP (123) and 3 TCP (6) services FTP (21), TELNET (23), and SMTP (25). 

DNR Directory Services    2–87 



GET-ROUTE-BYNAME 

GET-ROUTE-BYNAME 
The GET-ROUTE-BYNAME instance of the DIRSRV macro instruction is used to 
return a list of hosts willing to act as a mail exchange for a host. The name 
provided may be a local alias or a partial or fully-qualified domain name. The 
information returned is obtained globally from the Internet Domain Name 
System (DNS).  

[ symbol ] DIRSRV GET,ROUTE,BYNAME, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,QNBUF = qualified_name_address ]  
                  [ ,QNLEN = qualified_name_length ]  
                  [ ,SYSID = MVS_subsystem_id ] 
                  [ ,TIME = time_limit ] 
                  [ ,SIZE = size_limit ]  
                  [ ,OPTCD = ( [ SYNC | ASYNC ] 
                               [ ,BLOCK | NOBLOCK ]  
                               [ ,COPY | ORIGINAL ] ) ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,ROUTE,BYNAME  DNR searches for and returns a list of host names willing to act as mail 
exchanges for the host name or alias provided by the application program.  

NABUF = name_address  Address of a storage area in which the application program has placed the 
name of a host.  

The name may be a local alias defined in the alias configuration member 
(DNRALCxx) or an Internet domain name or alias name defined by the 
DNS. Internet domain names may be partially or fully-qualified. All names 
must conform to the syntactic rules described in Syntactic Rules for Names. 

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of a fully-qualified domain name is 255 bytes. The 
maximum length of a local alias name is 40 bytes. A length of zero is 
invalid.  

Default: Zero (no name provided).  

2–88     Assembler API Programmer Reference 



GET-ROUTE-BYNAME 

VABUF = value_address  Address of a storage area in which DNR returns a list of hosts willing to act 
as mail exchanges.  

The list contains EBCDIC character strings separated by a space character. 
The number of strings returned is specified in the SIZE operand. The list is 
sorted by preference giving the highest preferred host first. The number of 
entries is the smaller of the total number defined for the host, the length of 
the storage area available, or the number indicated by the SIZE operand.  

Default: Zero (no value storage area). 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand.  

The length is updated when the request completes reflecting the actual 
amount of information returned. If the request completes abnormally, no 
information is returned and the length remains unchanged.  

Default: Zero (no value returned).  

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the fully-qualified name 
used to search for the requested information.  

The fully-qualified name is either the result of a local alias lookup, a name 
formed by appending the DNR search list strings to a partially qualified 
domain name, or a DNS alias referral.  

Default: Zero (no qualified name storage area).  

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated when 
the request completes reflecting the actual length of the fully-qualified name 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to 
the start of a valid storage area.  

Default: Zero (no qualified name returned).  

DNR Directory Services    2–89 



GET-ROUTE-BYNAME 

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this 
operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

TIME = time_limit Maximum amount of elapsed time (in seconds) to find the requested 
information.  

Since portions of the distributed database are maintained on other systems, 
queries must sometimes be transmitted to remote destinations. Also, the 
responses to such queries may contain referrals to other remote systems. 
Therefore, some types of directory requests may take an arbitrary amount of 
time to complete.  

You can use this operand to limit the amount of time spent searching for 
specific information. If the directory search is abandoned because the time 
limit was exceeded, a DETIMOUT error code is returned to the application 
program.  

Default: Zero (use MAXTIME limit in DNRCFG00).  

SIZE = size_limit  Limit of the number of entries returned.  

A value of zero in the request, indicates there is no limit and the DNR is to 
return all entries associated with the domain name. If the return information 
will not fit in the storage area provided or if the application program 
specifies a limit less than the defined number of entries for the given host, 
the DCMORE conditional completion code is returned.  

Default: Zero (no size limit).  

2–90     Assembler API Programmer Reference 



GET-ROUTE-BYNAME 

OPTCD =  
SYNC | ASYNC  

Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of 
asynchronous notification. 

Default: SYNC (synchronous mode). 

OPTCD =  
BLOCK | NOBLOCK  

Disposition of a request if the information is not immediately available.  

OPTCD=BLOCK processing continues in accordance with the 
synchronization mode selected (OPTCD=SYNC | ASYNC). This option 
code affects disposition of a request after it is accepted by the DNR. 

OPTCD=NOBLOCK the request completes abnormally and the specific 
error code is set to DENOBLOK indicating that the request could not be 
completed immediately. OPTCD=NOBLOCK is generally used in 
conjunction with OPTCD=SYNC to prevent suspension of the issuing task 
for an extended period of time.  

Note: The issuing task may be momentarily suspended to let the DNR 
address space process the request. If the application program cannot afford 
to be suspended, even for a very small amount of time, then the request 
must be executed asynchronously (OPTCD=ASYNC).  

Default: BLOCK (suspend task indefinitely).  

OPTCD =  
COPY | ORIGINAL  

Specifies whether a copy of the information can be used to complete the 
request or whether original information must be returned.  

OPTCD=COPY a local copy of the requested information can be used to 
satisfy the request. Specifying OPTCD=COPY lets information returned as 
the result of a previous request be reused and returned to the application 
program, thus avoiding time-consuming queries to remote destinations. 

OPTCD=ORIGINAL the information must be returned from its original, 
authoritative source. Specifying OPTCD=ORIGINAL assures that the most 
current information is returned. 

Default: COPY (use copy of original data).  

DNR Directory Services    2–91 



GET-ROUTE-BYNAME 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are therefore mutually 
exclusive operands. If asynchronous mode is specified (OPTCD=ASYNC), 
the ECB-EXIT field of the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a WAIT 
macro instruction and clearing the ECB when posted. If 
EXIT=exit_routine_address is specified, DNR uses the field as the address of 
an exit routine, and schedules the routine as indicated in THE SECTION 
“Syntax Description”. 

If the option is ECB=INTERNAL, DNR uses the field as an internal ECB. 
The application program is responsible for issuing a WAIT macro 
instruction specifying the internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list 
is flagged for processing as if ECB=INTERNAL was specified, and the ECB-
EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT=exit_routine_address Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified by 
OPTCD=ASYNC. If synchronous mode was specified, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with 
an internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

2–92     Assembler API Programmer Reference 



GET-ROUTE-BYNAME 

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV 
macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make 
sure you align the storage area used for the remote parameter list on a 
fullword boundary. This ensures that the internal ECB is aligned on a 
fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the fully-qualified 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the fully-
qualified name in the QNBUF storage area. If the fully-qualified name could not 
fit in the storage area, DCOVRFLO is set. If the application program specified a 
SIZE limit less than the defined number of entries for the given host, or if the 
entire list of return information will not fit in the storage area provided, the 
DCMORE conditional completion code is returned. 

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

DNR Directory Services    2–93 



GET-ROUTE-BYNAME 

If the fully-qualified search string did not conform to the syntactic rules 
described in Syntactic Rules for Names, a DEBDNAME error code is returned. If 
the fully-qualified search string is a valid host name but the host does not exist, 
the DNR returns an error code of DENAMERR. If the fully-qualified search 
string is a valid and existing host but there is no specific data configured to 
satisfy the request, the DNR returns an error code of DENODATA. The fully-
qualified search string is the result of a fully-qualified name given in the NABUF 
storage area, a local alias lookup, a name formed by appending the DNR search 
list strings to a partially qualified domain name, or a DNS alias referral.  

Return Codes 

The following table lists the symbolic return codes for the GET-ROUTE-
BYNAME macro. The values associated with the symbolic names can be found 
in the DPL macro expansion. 
 

General 
Return Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY 
DCOVRFLO 

DCMORE 
DCLOCAL 

DCALIAS 

DRFAILED DAEXCPTN DENONAMEDETIM
OUT DENOCDS 
DENOBLOK 
DEVAMODE 

DENOVALU 
DERFAIL 
DENAMERR 
DENODATA 
DEQNMODE 

DENOQNAM 
DENOTFND 
DEOVRFLO 
DENAMODE 

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL 
DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD 
DEBDEXIT 

DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

2–94     Assembler API Programmer Reference 



GET-ROUTE-BYNAME 

Usage Information 

The GET-ROUTE-BYNAME instance of the DIRSRV macro is used by mailers to 
determine how to route a message given an Internet domain name. The DNR 
returns information received from DNS Mail Exchange (MX) records. MX 
records specify mail exchange hosts that know how to route mail to a host not 
directly connected to the Internet. MX records include a preference value that 
specifies the preference given to the host relative to other hosts. The DNR sorts 
MX records according to preference (lower values are preferred) and returns the 
host names in order. This order reflects the order the calling mailer programs 
should follow when delivering mail. To determine the internet address of the 
remote hosts, mailers should pass the hosts names returned in the GET-ROUTE-
BYNAME request as search strings to a DIRSRV GET-HOST-BYNAME request.  

Example This example shows the use of GET-ROUTE-BYNAME. The request is to find a 
list of hosts willing to act as a mail exchange for the host UNIX. The alias 
configuration member (DNRALCxx) contains:  

UNIX VAX.ACC.COM.  

The application supplies this DIRSRV information:  

NABUF = (address of:) 
 

N I X            

NALEN = 4  
VABUF = (address of:) 
 

                            

VALEN = 100 
QNBUF = (address of:)  
 

                            

QNLEN = 100  
SIZE = 100 

DNR Directory Services    2–95 



GET-ROUTE-BYNAME 

This information is returned:  

NABUF = (address of:) 

 

N I X            

NALEN = 4  
VABUF = (address of:)  
 

A T U R N . A C C . C O M . 

A L T . A C C . C O M .   

VALEN = 29  
QNBUF = (address of:) 
 

A T U R N . A C C . C O M . 

QNLEN = 15  
SIZE = 2  

SATURN.ACC.COM. is returned in the QNBUF because the search string UNIX 
was listed as an alias in the alias configuration member. The replacement string 
VAX.ACC.COM. was in turn known as an alias of SATURN.ACC.COM. in the 
domain name space. The DNR received a DNS response for 
SATURN.ACC.COM. and returned the information to the application program. 

2–96     Assembler API Programmer Reference 



GET-RPC-BYNAME 

GET-RPC-BYNAME 
The GET-RPC-BYNAME instance of the DIRSRV macro instruction is used to 
return an RPC number when its RPC name is known. This information returned 
is obtained locally from the RPC configuration member (DNRRPCxx).  

[ symbol ] DIRSRV GET,RPC,BYNAME, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,QNBUF = qualified_name_address ] 
                  [ ,QNLEN = qualified_name_length ]  
                  [ ,SYSID = MVS_subsystem_id ]  
                  [ ,OPTCD = SYNC | ASYNC ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ] 
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ] 

GET,RPC,BYNAME  DNR is to search for and return an RPC value associated with the RPC 
name provided by the application program.  

NABUF = name_address  Address of a storage area in which the application program has placed an 
RPC name.  

The name may be an RPC alias defined in the RPC configuration member 
(DNRRPCxx) or an official RPC name.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the name located in the storage area identified by the 
NABUF operand.  

The maximum length of an RPC name is 40 bytes. A length of zero is 
invalid.  

Default: Zero (no name provided).  

VABUF = value_address  Address of a storage area in which DNR returns an RPC value associated 
with the RPC name. Each returned RPC value is four bytes.  

Default: Zero (no value storage area). 

DNR Directory Services    2–97 



GET-RPC-BYNAME 

VALEN = value_length  Length (in bytes) of the storage area identified by the VABUF operand.  

The length is updated when the request completes reflecting the actual 
amount of information returned. If the request completes abnormally, no 
information is returned and the length remains unchanged. The minimum 
length of the storage area is four bytes.  

Default: Zero (no value returned).  

QNBUF = 
qualified_name_address  

Address of a storage area in which DNR returns the official RPC name used 
to search for the requested information. The DNR returns an RPC name in 
the QNBUF data area if the search string was an alias.  

Default: Zero (no qualified name storage area).  

QNLEN = 
qualified_name_length  

Length (in bytes) of the storage area identified by the QNBUF operand.  

This length is the maximum length of the storage area and is updated when 
the request completes reflecting the actual length of the fully-qualified name 
returned.  

Note: If QNLEN is non-zero, QNBUF must also be non-zero and point to 
the start of a valid storage area.  

Default: Zero (no qualified name returned).  

SYSID = 
MVS_subsystem_id  

ID of the MVS subsystem that will process this request. Normally this 
operand is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.  

Default: Not indicated (use installation default).  

2–98     Assembler API Programmer Reference 



GET-RPC-BYNAME 

OPTCD =  
SYNC | ASYNC  

Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is 
not returned to the application program until the requested macro 
instruction completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of 
asynchronous notification. 

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the 
Directory Services Parameter List (DPL), and are therefore mutually 
exclusive operands. If asynchronous mode is specified (OPTCD=ASYNC), 
the ECB-EXIT field of the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an 
external ECB. The application program is responsible for issuing a WAIT 
macro instruction and clearing the ECB when posted. If 
EXIT=exit_routine_address is specified, DNR uses the field as the address of 
an exit routine, and schedules the routine as indicated in the following EXIT 
operand. 

ECB=INTERNAL, DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list 
is flagged for processing as if ECB=INTERNAL was specified, and the ECB-
EXIT field is used as an internal ECB that is waited on and cleared 
automatically before returning control to the application program. 

Default: INTERNAL (internal ECB).  

DNR Directory Services    2–99 



GET-RPC-BYNAME 

EXIT=exit_routine_address Address of a routine to schedule when the request completes.  

The EXIT and ECB operands share the same storage location in the 
parameter list and are therefore mutually exclusive. The completion exit is 
scheduled only if asynchronous mode is specified by OPTCD=ASYNC. If 
synchronous mode was indicated, the exit routine is not used.  

If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E, 
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV 
macro instruction.  

The second sublist operand, dpl_address, specifies the address of the 
parameter list to use for this request. If no MF operand is specified, the 
standard form is used.  

Note: It is recommended to use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make 
sure you align the storage area used for the remote parameter list on a 
fullword boundary. This ensures that the internal ECB is aligned on a 
fullword boundary. 

Default: MF=I (inline, nonreentrant). 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly. DCALIAS is set if the 
name referenced in the NABUF and NALEN operands is not the official RPC 
name associated with the returned data. If DCALIAS is set and a storage area 
was supplied in the QNBUF and QNLEN operands, the DNR returns the official 
RPC name in the QNBUF storage area. If the official RPC name could not fit in 
the storage area, DCOVRFLO is set. 

2–100     Assembler API Programmer Reference 



GET-RPC-BYNAME 

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

Return Codes 

The following table lists the symbolic return codes for the GET-RPC-BYNAME 
macro. The values associated with the symbolic names can be found in the DPL 
macro expansion. 
 

General 
Return 
Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY  DCALIS DCOVRFLO 

DRFAILED DAEXCPTN DENONAMEDENOTFND 
DENAMODE 

DENOVALUD 
ENOCDS 
DEVAMODE 

DENOQNAMDE 
OVRFLO 
DEQNMODE 

 DAENVIRO DESYSERR DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

DNR Directory Services    2–101 



GET-RPC-BYNAME 

Example This example shows the use of GET-RPC-BYNAME. The request is to find the 
RPC number for the RPC name portmapper.  

The application supplies this DIRSRV information:  

NABUF = (address of:)  
 

U N R P C          

NALEN = 6  
VABUF = (address of:) 
 

                            

VALEN = 100  
QNBUF = (address of:) 
 

                            

QNLEN = 100  
SIZE = 0  

This information is returned:  

NABUF = (address of:)  
 

U N R P C          

NALEN = 6  
VABUF = (address of:)  
 

0x01 0x86 0xa0     

VALEN = 4  
QNBUF = (address of:)  
 

O R T M A P P E R      

2–102     Assembler API Programmer Reference 



GET-RPC-BYVALUE 

QNLEN = 10  

Because the search string, SUNRPC is given as an alias in the RPC configuration 
file, the official RPC name is returned in the qualified name buffer. 

GET-RPC-BYVALUE 
The GET-RPC-BYVALUE instance of the DIRSRV macro instruction is used to 
return an RPC name when its number is known. The information returned is 
obtained locally from the RPC configuration member (DNRRPCxx).  

[ symbol ] DIRSRV GET,RPC,BYVALUE, 
                  NABUF = name_address, 
                  NALEN = name_length, 
                  VABUF = value_address, 
                  VALEN = value_length  
                  [ ,SYSID = MVS_subsystem_id ]  
                  [ ,OPTCD = SYNC | ASYNC ] 
                  [ ,ECB = INTERNAL | event_control_block_addr ]  
                  [ ,EXIT = exit_routine_address ] 
                  [ ,MF = ( I | L | G | M | E, [ dpl_address ] ) ]  

GET,RPC,BYVALUE  DNR is to search for and return an RPC name associated with the RPC number 
provided by the application program.  

NABUF = name_address  Address of a storage area in which the DNR returns an RPC name.  

Default: Zero (no name storage area).  

NALEN = name_length  Length (in bytes) of the storage area identified by the NABUF operand. The 
length is updated when the request completes reflecting the actual amount of 
information returned. If the request completes abnormally, no information is 
returned and the length remains unchanged.  

Default: Zero (no name returned)  

VABUF = value_address  Address of a storage area in which the application program has placed a four-
byte RPC number.  

Default: Zero (no value storage area). 

DNR Directory Services    2–103 



GET-RPC-BYVALUE 

VALEN = value_length  Length (in bytes) of the RPC number located in the storage area identified by 
the VABUF operand. The value of the storage area must be four (bytes).  

Default: Zero (no value provided)  

SYSID = MVS_subsystem_id  ID of the MVS subsystem that will process this request. Normally this operand 
is not required and an installation default is used.  

The MVS_subsystem_id is an alphanumeric string up to four characters in 
length. 

Note: If more than one DNR subsystem is active on the local system, the 
particular subsystem that will process this request must be specified.   

Default: Not indicated (use installation default).  

OPTCD = SYNC | ASYNC  Synchronization mode used when executing this macro instruction. 

OPTCD=SYNC the request executes in synchronous mode, and control is not 
returned to the application program until the requested macro instruction 
completes. 

OPTCD=ASYNC the request executes in asynchronous mode, and returns 
control to the application program immediately after it is accepted by DNR. 
The application program is notified asynchronously when the request 
completes. The ECB and EXIT operands determine the form of asynchronous 
notification. 

Default: SYNC (synchronous mode). 

ECB = INTERNAL | 
event_control_block_addr 

Location of an event control block (ECB) posted by DNR when the directory 
request completes. The ECB can be any fullword of storage aligned on a 
fullword boundary. 

The ECB and EXIT operands share the same storage location in the Directory 
Services Parameter List (DPL), and are therefore mutually exclusive operands. 
If asynchronous mode is specified (OPTCD=ASYNC), the ECB-EXIT field of 
the DPL (DPLECBXR) is used in this manner:  

ECB=event_control_block_addr DNR uses the field as the address of an external 
ECB. The application program is responsible for issuing a WAIT macro 
instruction and clearing the ECB when posted. If EXIT=exit_routine_address is 
specified, DNR uses the field as the address of an exit routine, and schedules 
the routine as indicated in the following EXIT operand text. 

2–104     Assembler API Programmer Reference 



GET-RPC-BYVALUE 

 ECB=INTERNAL DNR uses the field as an internal ECB. The application 
program is responsible for issuing a WAIT macro instruction specifying the 
internal ECB, but need not clear it when posted. 

Note: If synchronous mode is specified (OPTCD=SYNC), the parameter list is 
flagged for processing as if ECB=INTERNAL was specified, and the ECB-EXIT 
field is used as an internal ECB that is waited on and cleared automatically 
before returning control to the application program. 

Default: INTERNAL (internal ECB).  

EXIT=exit_routine_address Address of a routine to schedule when the request completes. The EXIT and 
ECB operands share the same storage location in the parameter list and are 
therefore mutually exclusive.  

The completion exit is scheduled only if asynchronous mode is specified by 
OPTCD=ASYNC. If synchronous mode was specified, the exit routine is not 
used. If one is specified with this operand, the address is overwritten with an 
internal ECB before the request completes. 

Default: Not indicated (no exit routine).  

MF = ( I | L | G | M | E,  
[ dpl_address ] ) 

Standard (inline), list, generate, modify, or execute form of the DIRSRV macro 
instruction.  

The second sublist operand, dpl_address, specifies the address of the parameter 
list to use for this request. If no MF operand is specified, the standard form is 
used.  

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=I (inline, nonreentrant). 

DNR Directory Services    2–105 



GET-RPC-BYVALUE 

Completion Information 

The DIRSRV macro instruction completes normally (or conditionally) when the 
requested information is returned in the storage area provided by the application 
program. The length of the storage area is updated to reflect the actual amount 
of information returned.  

On normal return to the application program, the general return code in register 
15 is set to zero (DROKAY), and the conditional completion code is returned in 
register zero. The DPL return code field is set accordingly.  

If the DIRSRV macro instruction completes abnormally, no information is 
returned in the storage area and the storage area length is unmodified. The 
general return code in register 15 and the recovery action code indicate the 
nature of the failure. 

■  If the general return code is set to DRFAILED, the recovery action code is 
returned in register zero and the DPL return code contains a specific error 
code that identifies a particular error 

■  If the general return code is set to DRFATLPTL, the recovery action code and 
the error code are both returned in register zero and the DPL is not updated  

Return Codes 

The following table lists the symbolic return codes for the GET-RPC-BYVALUE 
macro. The values associated with the symbolic names can be found in the DPL 
macro expansion. 
 

General Return 
Code 

Recovery Action 
Code 

Conditional or Specific Error Code  

DROKAY DAOKAY DCOKAY    

DRFAILED DAEXCPTN DENONAMEDENOCD
S DEVAMODE 

DENOVALU 
DEOVRFLO  

DENOTFND 
DENAMODE  

 DAENVIRO DESYSERR 
DENOTACT 
DEUNAVBL DETERM 

DESUBSYS 
DENOTRDY 
DERSOURC 

DENOTCNF 
DESTOP 
DENOTPRB  

 DAFORMAT DEBDOPCD DEBDEXIT DEBDFNCD 
DEBDNAME 

DEBDXECB 
DEBDVALU 

DRFATLPTL DAPROCED DEACTIVE   

 DADPLERR DEBDTYPE DEPROTCT DEPLMODE 

2–106     Assembler API Programmer Reference 



GET-RPC-BYVALUE 

Example This example shows the use of GET-RPC-BYVALUE. The request is to find the 
RPC name for the RPC value 100000.  

The application supplies this DIRSRV information: 

NABUF = (address of:) 
 

                            

NALEN = 100  
VABUF = (address of:) 
 

0x01 0x86 0xa0     

VALEN = 4  

This information is returned:  

NABUF = (address of:)  
 

O R T M A P P E R      

NALEN = 10  
VABUF = (address of:) 
 

0x01 0x86 0xa0     

VALEN = 4  

DNR Directory Services    2–107 



PURGE 

PURGE 
The PURGE instance of the DIRSRV macro instruction is used to purge a 
previously issued asynchronous DIRSRV request. The DNR searches for the DPL 
and completes the request.  

[ symbol ] DIRSRV PURGE,  

MF = ( E, dpl_address ] ) 

PURGE  DNR is to purge a previously issued DIRSRV request.  

MF = 
( E, [ dpl_address ] )  

The execute form of the PURGE macro instruction.  

The second sublist operand, dp_ address, specifies the address of the parameter 
list to purge. 

Note: It is recommended you use the list form of the macro to ensure DPL 
alignment on a full word boundary. If you do not use the list form, make sure 
you align the storage area used for the remote parameter list on a fullword 
boundary. This ensures that the internal ECB is aligned on a fullword 
boundary. 

Default: MF=E  

Return Codes 

The following table lists the symbolic return codes for the PURGE macro. The 
values associated with the symbolic names can be found in the DPL macro 
expansion. 
 

General 
Return Code 

Recovery 
Action Code 

Conditional or Specific Error Code 
  

DROKAY DAOKAY DCOKAY  

DRFAILED DAENVIRO DESYSERR 

 

2–108     Assembler API Programmer Reference 



  

 

     



  

Appendix 

A MF Operand Summary 

 

This appendix includes the macro instruction forms indicated by the MF 
operand. It includes these sections: 

■  Macro Instruction Forms Supported by the API—Describes the macro 
instruction forms supported by the API 

■  MF Operands Supported by API Macro Instructions—Describes the MF 
operands supported by the API macro instructions 

■  Short, Long and Extended Parameter List Forms —Discusses the long and 
short parameter list forms 

■  Internal API Macro Instructions —Describes internal macro instructions for 
expanding TPL-based macro instructions 

Macro Instruction Forms Supported by the API 
Macro instruction forms are indicated by the MF operand. The first sublist 
operand is the form type. The second sublist operand, if coded, must be the 
address of the storage area that contains, or will contain, the parameter list 
associated with the macro instruction.  
 

Macro 
Instruction Form 

Description 

MF=I Generate parameter list in-line with macro instruction, as well
as instructions in-line to execute parameter list.  

MF=L Generate parameter list in-line with macro instruction.  

Do not generate instructions to execute parameter list.  

MF=(L,addr) Generate instructions in-line with macro instruction to build 
parameter list in remote storage area indicated by addr.  

Do not generate instructions to execute parameter list.  

MF Operand Summary    A–1 



Macro Instruction Forms Supported by the API 

Macro 
Instruction Form 

Description 

MF=(G,addr) Generate instructions in-line with macro instruction to build 
parameter list in remote storage area indicated by addr, as 
well as instructions to execute parameter list.  

MF=(M,addr) Generate instructions in-line with macro instruction to 
modify parameter list in remote storage area indicated by 
addr.  

Do not generate instructions to execute parameter list.  

MF=(E,addr) Generate instructions in-line with macro instruction to 
modify parameter list in remote storage area indicated by 
addr, as well as generate instructions to execute parameter 
list.  

MF=DSECT Generate a dummy control section in-line with macro 
instruction that maps the fields of the control block. 

Note: Macro instruction forms are discussed in detail in the chapter “Assembler 
Language Macro Instructions.” 

A–2    Assembler API Programmer Reference 



MF Operands Supported by API Macro Instructions 

MF Operands Supported by API Macro Instructions 
The following table indicates which macro instruction forms are supported for 
each API macro instruction.  

When: 

■  A Yes appears in a column, it indicates the corresponding form is supported 
for the particular macro instruction 

■  Default appears in a column, it indicates the corresponding form is the 
default if the MF operand is not coded 

 

Macro 
Instruction 

Macro 
Instruction 
Forms 

 
 

 
 

 
 

 
 

 
 

 
 

 MF=I MF=L MF=L,addr MF=G,addr MF=M,addr MF=E,addr MF=DSECT  

ACLOSE MF operand 
not supported 
for this macro 
instruction 

      

AOPEN MF operand 
not supported 
for this macro 
instruction 

      

APCB No Default No No No No Yes  

TACCEPT Default Yes Yes Yes Yes Yes No  

TADDR Default Yes Yes Yes Yes Yes No  

TBIND Default Yes Yes Yes Yes Yes No  

TCHECK No No No No No Default No  

TCLEAR Default Yes Yes Yes Yes Yes No  

TCLOSE Default Yes Yes Yes Yes Yes No  

TCONFIRM Default Yes Yes Yes Yes Yes No  

TCONNECT Default Yes Yes Yes Yes Yes No  

TDISCONN Default Yes Yes Yes Yes Yes No  

MF Operand Summary    A–3 



MF Operands Supported by API Macro Instructions 

Macro 
Instruction 

Macro 
Instruction 
Forms 

 
 

 
 

 
 

 
 

 
 

 
 

 MF=I MF=L MF=L,addr MF=G,addr MF=M,addr MF=E,addr MF=DSECT  

TDSECT MF operand 
not supported 
for this macro 
instruction 

      

TERROR No No No No No Default No 

TEXEC Default No No Yes No Yes No  

TEXLST No Default Yes No Yes No No  

TINFO Default Yes Yes Yes Yes Yes No  

TLISTEN Default Yes Yes Yes Yes Yes No  

TOPEN Default Yes Yes Yes Yes Yes No 

TOPTION Default Yes Yes Yes Yes Yes No  

TPL No Default Yes No Yes No No  

TRECV Default Yes Yes Yes Yes Yes No  

TRECVERR Default Yes Yes Yes Yes Yes No 

TRECVFR Default Yes Yes Yes Yes Yes No  

TREJECT Default Yes Yes Yes Yes Yes No 

TRELACK Default Yes Yes Yes Yes Yes No  

TRELEASE Default Yes Yes Yes Yes Yes No  

TRETRACT Default Yes Yes Yes Yes Yes No 

TSEND Default Yes Yes Yes Yes Yes No  

TSENDTO Default Yes Yes Yes Yes Yes No  

TSTATE No No No No No Default No 

A–4    Assembler API Programmer Reference 



Short, Long and Extended Parameter List Forms 

Macro 
Instruction 

Macro 
Instruction 
Forms 

 
 

 
 

 
 

 
 

 
 

 
 

 MF=I MF=L MF=L,addr MF=G,addr MF=M,addr MF=E,addr MF=DSECT  

TUNBIND Default Yes Yes Yes Yes Yes No 

TUSER Default Yes Yes Yes Yes Yes No 

Short, Long and Extended Parameter List Forms  
Most API macro instructions are TPL-based, indicating that they use a TPL for 
passing parameters to the requested transport service function and returning 
information to the application program. The TPL is normally 64 bytes in length 
and contains all the field necessary to store parameters for any API function. The 
same TPL can be used for all macro instructions as long as the appropriate 
operands are specified and fields are initialized as required.  

However, many TPL-based macro instructions do not require a full-size TPL 
since only a subset of the information contained in the TPL is interpreted by the 
function executed. Therefore, the API supports a short form of the TPL for most 
TPL-based macro instructions. The TPL is organized so that the most frequently 
required fields occur at the beginning, and the least frequently used fields occur 
at the end. 

Finally, the extended TPL adds a suffix to the standard length TPL. The suffix 
contains ALETs for all possible TPL parameters that address other data areas. 
Extended TPLs enable these data areas to reside in other address spaces. 

MF Operand Summary    A–5 



Short, Long and Extended Parameter List Forms 

Macro Instruction Rules 

For a given macro instruction, the short form TPL is a contiguous subset of the 
long (standard) form. The size of this subset is function-specific.  

These rules apply: 

■  The minimum size for a short form TPL is 20 bytes.  

If the macro instruction does not use any of the variable-length operand 
fields (for example, ADLEN and ADBUF) and does not pass or return any 
parameters other than option codes and return codes, the minimum size TPL 
can be used. This applies to macro instructions that use no operands other 
than FNCCD, OPTCD, EP, ECB, and EXIT and return no parameters other 
than the normal completion codes (that is, RTNCD). 

■  Macro instructions that do not use any of the variable-length operand fields 
but do pass or return one or more parameters in addition to the normal 
option codes and return codes, require 12 more bytes for a total of 32 bytes. 
Macro instructions that do not fall into the first group and do not use the 
ADLEN, ADBUF, DALEN, DABUF, OPLEN, or OPBUF operands can use a 
32-byte TPL.  

■  The short form TPL size for the remaining macro instructions is determined 
on a case-by-case basis, depending on the number of variable-length 
parameters required for typical uses of the macro instruction.  

Example If only the protocol address parameter is required (that is, ADLEN and ADBUF 
operands), a 40-byte TPL can be used. If a protocol address or user data is 
required, a 48-byte TPL can be used. Generally, less frequently used parameters 
such as protocol options and user connect data are excluded for the purpose of 
determining the length of the short form TPL. 

A–6    Assembler API Programmer Reference 



Internal API Macro Instructions 

Internal API Macro Instructions  
The API uses several internal macro instructions for expanding TPL-based macro 
instructions. These have been included in the macro library provided with the 
API.  

The APIMZGBL Macro Instruction 

The APIMZGBL macro instruction is used to set global constants that are 
referenced by other macro instructions. Since some of these constants affect the 
appearance of the assembler language listing, the APIMZGBL macro instruction 
is partially defined in this section.  

Note: Only those operands that may be of interest to the application 
programmer are documented.  

Assembler Format Description 

This is the assembler format description for the APIMZGBL macro instruction: 

[symbol ] APIMZGBL [ COMMENT=comment column number] 

                   [ ,R0 = symbol for register 0 ] 

                   [ ,R1 = symbol for register 1 ] 

                   [ ,R13 = symbol for register 13 ] 

                   [ ,R14 = symbol for register 14 ] 

                   [ ,R15 = symbol for register 15  

symbol The symbolic name of the macro. 

COMMENT = comment 
column number  

Initial column number for comments in generated assembler language 
statements.  

The operand must be an integer value between 16 and 71, inclusive.  

Default: 36. 

MF Operand Summary    A–7 



Internal API Macro Instructions 

R0 = symbol for register 0 Symbol used to represent general register zero in generated assembler 
language statements.  

If an alphanumeric symbol is specified, the symbol must be defined 
elsewhere in the input stream using an EQU statement.  

Default: Zero  (use standard numeric symbol). 

R1 = symbol for register 1 Symbol used to represent general register one in generated assembler 
language statements.  

If an alphanumeric symbol is specified, the symbol must be defined 
elsewhere in the input stream using an EQU statement.  

Default: One (use standard numeric symbol).  

R13 = symbol for register 13 Symbol used to represent general register 13 in generated assembler 
language statements.  

If an alphanumeric symbol is specified, the symbol must be defined 
elsewhere in the input stream using an EQU statement.  

Default: 13 (use standard numeric symbol).  

 R14 = symbol for register 14 Symbol used to represent general register 14 in generated assembler 
language statements.  

If an alphanumeric symbol is specified, the symbol must be defined 
elsewhere in the input stream using an EQU statement.  

Default: 14 (use standard numeric symbol).  

R15 = symbol for register 15 Symbol used to represent general register 15 in generated assembler 
language statements.  

If an alphanumeric symbol is specified, the symbol must be defined 
elsewhere in the input stream using an EQU statement.  

Default: 15 (use standard numeric symbol). 

Example This example sets the comment column to 41, and redefines the general register 
symbols:  
APIMZGBL COMMENT=41,R0=R0,R1=R1,R13=R13,R14=R14,R15=R15 

A–8    Assembler API Programmer Reference 



  

Appendix 

B 
Macro Instruction Operand 
Summary 

 
This appendix summarizes the operands for the API macro instructions. 

The tables in this appendix summarize the operands for all API macro 
instructions. For each macro instruction, all positional and keyword operands 
are listed. Positional operands are indicated by their position within the SYSLIST 
variable symbol, and keyword operands are indicated by their keyword name.  

 For example: 

■  SYSLIST(1) indicates the first positional operand 

■  SYSLIST(n) indicates the nth positional operand 

■  ADBUF indicates a keyword operand whose keyword name is ADBUF  

Information Provided 

The following information is provided for each operand:  

■  Operand position or keyword  

■  Operand format 

■  Default value 

■  DSECT label defining the parameter list location 

■  Operand description  

■  Operand Format 

The operand format defines how the operand is generated and stored in the 
corresponding parameter list. For simple list forms of macro instructions 
(MF=L), the type of DC instruction that generates the operand at assembly time 
is listed. For all other forms, the instruction that expands to generate the operand 
at execution time is listed. If an entry is blank, either the operand cannot be 
specified with the indicated form, or the macro form is not supported for the 
particular macro instruction. N/A indicates that the operand does not cause a 
value to be stored in the corresponding parameter list, and is not applicable.  

Macro Instruction Operand Summary    B–1 



Macro Instruction Operands 

Integer Notes 

For macro instructions that generate a parameter list, the default value generated 
when the operand is not specified is listed. An integer value enclosed in square 
brackets references one of these notes: 
 

[1]  The EXIT operand is mutually exclusive with the ECB operand.  

If neither is specified, the default value for the ECB operand applies.  

[2] The PROTO operand is mutually exclusive with the TYPE operand.  

If neither is specified, the default value for the TYPE operand applies. 

[3] For the TEXEC and TPL macro instructions, the FNCCD operand defaults 
to zero if not specified.  

For all other TPL-based macro instructions, the function code parameter is 
generated in accordance with the macro instruction used to generate the 
parameter list. 

If the operand specifies a value stored in a parameter list, the DSECT label 
corresponding to the operand is listed: 

■  The first label defines the location in the parameter list where the operand is 
stored.  

■  The second label following a colon (:) specifies the EQU used to define bit 
fields within location. Any label listed in parentheses is an alternate name 
for the same location. 

B–2    Assembler API Programmer Reference 



Macro Instruction Operands 

Macro Instruction Operands 
This section includes the operand summary for all macros, listed in alphabetical 
order.  

ACLOSE Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

APCB  LA  N/A APCB Address 

AOPEN Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

APCB  LA  N/A APCB Address  

APCB Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ACNTX A  0 APCBACTX Application Context  

AM AL1  TLI APCBAM: APCBAMSK Access Method  

APPLID CL8  0 APCBAPPL Application Name  

ECNTX A  0 APCBECTX Environment Context  

ENVIRO AL1  ASM APCBENVR Run-Time Environment 

EXLST A  0 APCBEXLS Exit List 

OPTCD AL1  TRACE APCBOPTC: APCBOTRC Option Codes  

PASSWD CL8  0 APCBPSWD Application Password  

Macro Instruction Operand Summary    B–3 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

RMODE AL1  ANY APCBFLAG: APCBFANY Residency Mode 

SYSID CL4  ACSS APCBAMID MVS Subsystem ID  

TACCEPT Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address 

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

NEWEP  L 0 TPLNEWEP (TPLPARM2) New Endpoint 
Identifier 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length  

OPTCD AL1 NI-OI SYNC  
LONG  
NONEGOT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONEGOT 

Option Codes 

SEQNO  L 0 TPLSEQNO (TPLPARM1) Sequence Number  

B–4    Assembler API Programmer Reference 



Macro Instruction Operands 

TADDR Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length  

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier 

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address  

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
LOCAL 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD3:TOREMOTE 

Option Codes 

Macro Instruction Operand Summary    B–5 



Macro Instruction Operands 

TBIND Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length  

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
NONEGOT  
USE 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD1:TONEGOT 
TPLOPCD3:TOASSIGN 

Option Codes 

QLSTN A LA 0 TPLQLSTN (TPLPARM1) Listen Queue Size  

Note: TCHECK macro instruction has no keyword operands other than MF and 
TPL. 

B–6    Assembler API Programmer Reference 



Macro Instruction Operands 

TCLEAR Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address 

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
NOTRUNC 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 

Option Codes 

TCLOSE Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ASCB  L 0 TPLASCB (TPLPARM2) ASCB Address 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
DELETE 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD3:TOPASS 

Option Codes 

TCB  L 0 TPLTCB (TPLPARM1) TCB Address  

Macro Instruction Operand Summary    B–7 



Macro Instruction Operands 

TCONFIRM Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length 

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) ECB Address 

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length  

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
BLOCK 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD1:TONOBLOK 

 

B–8    Assembler API Programmer Reference 



Macro Instruction Operands 

TCONNECT Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length 

DABUF A LA 0 TPLDABUF User Data Address 

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier 

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length  

OPTCD AL1 NI-OI SYNC  
LONG  
NONEGOT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONEGOT 

Option Codes  

Macro Instruction Operand Summary    B–9 



Macro Instruction Operands 

TDISCONN Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address 

DALEN A LA 0 TPLDALEN User Data Length  

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC LONG 
CLEAR 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD2:TOABORT 

Option Codes  

TDSECT Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

SYSLIST(n) N/A N/A  N/A Data Structure Name 

DOMAIN N/A N/A INET N/A Communications Domain  

TERROR Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

SYSLIST(1) N/A N/A SUMMARY N/A Message Format  

Note: Macro instruction has no keyword operands other than MF and TPL 

B–10    Assembler API Programmer Reference 



Macro Instruction Operands 

TEXEC Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

FNCCD AL1 LA [3] TPLFNCCD Function Code 

Note: Any keyword operand valid for other TPL-based macro instructions 
(except TOPEN). 

TEXLST Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

SYSLIST(1) N/A N/A AOPEN N/A Exit List Type  

CONFIRM A LA 0 TXLCONF Exit Routine Address  

CONNECT A LA 0 TXLCONN Exit Routine Address  

DATA A LA 0 TXLDATA Exit Routine Address  

DGERR A LA 0 TXLDGERR Exit Routine Address  

DISCONN A LA 0 TXLDISC Exit Routine Address  

LERAD A LA 0 TXLLERAD Exit Routine Address  

RELEASE A LA 0 TXLRELSE Exit Routine Address  

SYNAD A LA 0 TXLSYNAD Exit Routine Address  

TPEND A LA 0 TXLTPEND Exit Routine Address  

APEND A LA 0 TXLAPEND Exit List Address Table  

Macro Instruction Operand Summary    B–11 



Macro Instruction Operands 

TINFO Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address  

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
PRIMARY 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD4:TOINFO 

Option Codes 

TLISTEN Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length 

DABUF A LA 0 TPLDABUF User Data Address 

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

B–12    Assembler API Programmer Reference 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length 

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
BLOCK 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD1:TONOBLOK 

Option Codes  

TOPEN Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

APCB A LA 0 TPLAPCB APCB Address  

ASCB  L 0 TPLASCB (TPLPARM2) ASCB Address  

DOMAIN AL1 LA INET TPLDOM Communications 
Domain  

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address  

EXLST A LA 0 TPLEXLST Exit List Address  

 

Macro Instruction Operand Summary    B–13 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

OPTCD AL1 NI-OI LONG  
SYNC  
TUB  
PLAIN  
NEW 

TPLOPCD1:TOSHORT 
TPLOPteCD1:TOASYNC 
TPLOPCD3:TOACEE 
TPLOPCD3:TOCIPHER 
TPLOPCD3:TOOLD 

Option Codes 

PROTO AL2 LA [2] TPLPROTO Protocol Number  

SVCID CL8 MVC 0 TPLSVCID Service Name 

TCB  L 0 TPLTCB (TPLPARM1) TCB Address  

TYPE AL2 LA COTS TPLTYPE Service Type  

UCNTX A LA 0 TPLUCNTX User Context 

USER A LA 0 TPLUSER (TPLPARM3) TUB or ACEE Address 
Table 

TOPTION Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

B–14    Assembler API Programmer Reference 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length 

OPTCD AL1 NI-OI SYNC  
LONG 
NONEGOT 
DECLARE 
TP 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONEGOT 
TPLOPCD4:TOOPTION 
TPLOPCD4:TOAPI 

Option Codes 

TPL Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

FNCCD AL1 LA [3] TPLFNCCD Function Code 

Note: Any keyword operand valid for other TPL-based macro instructions 
(except TOPEN). 

TRECV Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address  

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

Macro Instruction Operand Summary    B–15 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
BLOCK  
DIRECT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONOBLOK 
TPLOPCD2:TOINDIR 

Option Codes 

TRECVERR Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address  

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length 

OPTCD AL1 NI-OI SYNC  
LONG  
NOTRUNC 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 

Option Codes Table  

B–16    Assembler API Programmer Reference 



Macro Instruction Operands 

TRECVFR Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length  

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address 

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length  

OPTCD AL1 NI-OI SYNC  
LONG 
NOTRUNC 
BLOCK  
DIRECT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TOTRUNC 
TPLOPCD1:TONOBLOK 
TPLOPCD2:TOINDIR 

Option Codes  

Macro Instruction Operand Summary    B–17 



Macro Instruction Operands 

TREJECT Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address  

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
CLEAR 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD2:TOABORT 

Option Codes  

SEQNO  L 0 TPLSEQNO (TPLPARM1) Sequence Number  

TRELACK Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
BLOCK  
CLEAR 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONOBLOK 
TPLOPCD2:TOABORT 

Option Codes  

B–18    Assembler API Programmer Reference 



Macro Instruction Operands 

TRELEASE Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 

Option Codes 

TRETRACT Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address  

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 

Option Codes Table 

Macro Instruction Operand Summary    B–19 



Macro Instruction Operands 

TSEND Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length 

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
NOMORE 
NORMAL  
EOM  
DIRECT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD2:TOMORE 
TPLOPCD2:TOEXPDTE 
TPLOPCD2:TONOTEOM 
TPLOPCD2:TOINDIR 

Option Codes  

TSENDTO Operand Format  
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ADBUF A LA 0 TPLADBUF Protocol Address 
Address 

ADLEN A LA 0 TPLADLEN Protocol Address 
Length  

DABUF A LA 0 TPLDABUF User Data Address  

DALEN A LA 0 TPLDALEN User Data Length  

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

B–20    Assembler API Programmer Reference 



Macro Instruction Operands 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address  

OPBUF A LA 0 TPLOPBUF Protocol Options 
Address  

OPLEN A LA 0 TPLOPLEN Protocol Options 
Length 

OPTCD AL1 NI-OI SYNC  
LONG 
NONEGOT 
DIRECT 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD1:TONEGOT 
TPLOPCD2:TOINDIR 

Option Codes  

Note: TSTATE Macro instruction has no keyword operands other than MF and 
TPL. 

TUNBIND Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLECB (TPLECBXR) ECB Address 

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 

Option Codes 

Macro Instruction Operand Summary    B–21 



Macro Instruction Operands 

TUSER Operand Format 
 

 Operand 
Format 

 
 

Default 
Value 

DSECT Label Description 

Operand MF=L Other    

ECB A LA INTERNAL TPLCB (TPLECBXR) ECB Address  

EP  L 0 TPLEPID (TPLEP) Endpoint Identifier  

EXIT A LA [1] TPLEXIT (TPLECBXR) Completion Exit 
Address 

OPTCD AL1 NI-OI SYNC  
LONG  
TUB  
PLAIN 

TPLOPCD1:TOASYNC 
TPLOPCD1:TOSHORT 
TPLOPCD3:TOACEE 
TPLOPCD3:TOCIPHER 

Option Codes 

USER A LA 0 TPLUSER (TPLPARM3) TUB or ACEE Address 
Table 

 

B–22    Assembler API Programmer Reference 



  

Appendix 

C Register Usage Summary 

 

This appendix shows how the general-purpose registers are set when control is 
returned to the next sequential instruction following the execution of an API 
macro instruction.  

The table in the following section indicates which registers are left unchanged by 
the macro instruction, and which ones may be modified between the time the 
macro instruction is executed and control is returned to the application program. 
The table also shows the disposition of registers when any exit routine receives 
control. For a detailed discussion of exit routines, refer to TCPaccess Assembler 
API Concepts. 

The following are the notes used in the next section when an integer is enclosed 
in square brackets. 

[1] Register 13 must contain the address of an 18-word save area when the 
macro instruction is executed.  

The API uses this save area to save and restore registers 2-12 before 
returning to the application program. 

[2] Register 15 contains a general return code that indicates the overall success
or failure of the macro instruction. 

Register Usage Summary    C–1 



API Register Usage 

Based on the contents of register 15, register zero is set as the following 
table indicates: 

 
Register 15 Register 0 

0 X'00' Conditional completion code 

4 X'04' Recovery action code  

8 X'08' Function code 

12 X'0C' Diagnostic code 

16 X'10' Diagnostic code  

20 X'14' Diagnostic code  

 If an error occurrs and the SYNAD or LERAD exit routine was invoked, 
registers zero and 15 contain the values returned by the exit routine.  

If an error occurred and no SYNAD or LERAD exit routine exits, the API
sets register 15 to four (X'04') and returns a recovery action code in 
register zero. Fatal errors resulting in a general return code greater than 
four never invoke the SYNAD or LERAD exit routines. 

If an error occurs during the execution of a TERROR or TSTATE macro 
instruction, the SYNAD and LERAD exit routines are bypassed, and 
control is returned directly to the application program. 

[3] When the SYNAD or LERAD exit routine is invoked, registers 2-12 are 
restored to their original contents at the time the macro instruction 
causing the error was executed. 

C–2    Assembler API Programmer Reference 



API Register Usage 

API Register Usage 
 

Contents Of General-Purpose Registers Instance 

Register 
0 

Register 
1 

Register  
2-12 

Register 
13  

Register  
14 

Register 
15 

On return from 
AOPEN and 
ACLOSE macro 
instructions 

Zero if 
successful, 
specific error 
code otherwise 

Address of
APCB 

Unmodified Unmodified [1] Unpredictable General 
return 
code  

On return from 
TCHECK macro 
instruction 

Conditional 
completion code 
if successful, 
otherwise see 
note [2] 

Address of
TPL 

Unmodified Unmodified [1] Unpredictable General 
return  
code [2]  

On return from 
TERROR macro 
instruction 

Address of TEM 
if successful, 
otherwise see 
note [2] 

Address of
TPL 

Unmodified Unmodified [1] Unpredictable General 
return  
code [2]  

On return from 
TSTATE macro 
instruction 

Endpoint state 
(TSW) if 
successful, 
otherwise see 
note [2] 

Address of
TPL 

Unmodified  Unmodified [1] Unpredictable General 
return  
code [2]  

On return from 
TEXLST macro 
instruction 

Unmodified Address of
TXL 

Unmodified Unmodified Unmodified General 
return 
code 
(always 
zero)  

On return from 
all other TPL- 
based macro 
instructions 
OPTCD=SYNC 

Conditional 
completion code 
if successful, 
otherwise see 
note [2] 

Address of
TPL 

Unmodified Unmodified [1] Unpredictable General 
return  
code [2]  

On return from 
all other TPL- 
based macro 
instructions 
OPTCD= 
ASYNC 

Zero if accepted, 
otherwise see 
note [2] 

Address of
TPL 

Unmodified Unmodified [1] Unpredictable General 
return  
code [2]  

Register Usage Summary    C–3 



API Register Usage 

Contents Of General-Purpose Registers Instance 

Register 
0 

Register 
1 

Register  
2-12 

Register 
13  

Register  
14 

Register 
15 

On invocation of 
a SYNAD or 
LERAD exit 
routine 

Recover action 
code 

Address of
TPL 

Unmodified 
[3] 

Unmodified [1]  API return 
address 

Address of
exit 
routine  

On invocation of 
a TPL 
completion exit 
routine 

Unpredictable Address of
TPL 

Unpredictable Unpredictable  API return 
address 

Address of
exit 
routine  

On invocation of 
all other 
asynchronous 
exit routines 

Unpredictable Address of
TPL 

Unpredictable Unpredictable  API return 
address 

Address of
exit 
routine 

 

C–4    Assembler API Programmer Reference 



  

Appendix 

D 
Data Structures (Assembler 
Language) 

 

This appendix includes the data structures provided by the application program 
as arguments of TCPaccess transport service functions or generated by the API 
and referenced by the application program. It defines the API data structures as 
used by application programs written in assembler language. Refer to the 
TCPaccess C/Socket API Programmer’s Reference for definitions of the same data 
structures as used by application programs written in C language. This appendix 
includes these sections: 

■  Generating Dummy Control Sections—Describes the standard and alternate 
methods for generating dummy control sections (DSECTs) 

■  Assembler Language Definitions—Includes the assembler language 
definition DSECT code as used by application programs written in assembler 
language. 

Generating Dummy Control Sections 
Most dummy control sections (DSECTs) listed in this appendix can be generated 
with the TDSECT macro instruction, described in the chapter “Assembler 
Language Macro Instructions.” 

Data Structures (Assembler Language)    D–1 



Generating Dummy Control Sections 

Data Structure Names 

The data structure name of each DSECT to be generated must be included in the 
macro instruction’s operand list. For each API data structure listed in this table, a 
standard and alternate method for generating the DSECT is given.  
 

Macro Instruction Required to Generate DSECT Data 
Structure 

Standard Method Alternate Method 

APCB [symbol] APCB 
MF=DSECT 

[symbol] APIDAPCB  MF=DSECT  

APCBXL [symbol] APCB 
MF=DSECT 

[symbol] APIDAPCB  MF=DSECT 

TEM [symbol] TDSECT TEM TEM APIDTEM MF=DSECT 

TIB [symbol] TDSECT TIB TIB APIDTIB MF=DSECT 

TPA [symbol] TDSECT TPA TPA APIDTPA MF=DSECT 

TPL [symbol] TDSECT TPL  TPL APIDTPL MF=DSECT 

TPO [symbol] TDSECT TPO  TPO APIDTPO MF=DSECT 

TSW [symbol] TDSECT TSW TSW APIDTSW MF=DSECT 

TUB [symbol] TDSECT TUB TUB APIDTUB MF=DSECT 

TXL [symbol] TDSECT TXL TXL APIDTXL MF=DSECT 

TXP [symbol] TDSECT TXP TXP APIDTXP MF=DSECT 

D–2    Assembler API Programmer Reference 



Assembler Language Definitions 

Assembler Language Definitions 
This section includes the following assembler language definition DSECT code: 

■  Application Program Control Block (APCB) 

■  APCB exit list 

■  Transport Endpoint Error Message (TEM) 

■  Transport Service Information Block (TIB) 

■  Transport Protocol Address (TPA) 

■  Transport Service Parameter List (TPL) 

■  Transport Protocol Options (TPO) 

■  Transport Endpoint State Word (TSW) 

■  Transport Endpoint User Block (TUB) 

■  Transport Endpoint Exit List (TXL) 

■  Transport Endpoint Exit Parameters (TXP) 

APCB (Application Program Control Block) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF 
*THE APPLICATION PROGRAM CONTROL BLOCK (APCB). THE APCB 
*CONTAINS INFORMATION ASSOCIATED WITH THE APPLICATION 
*PROGRAM AND IS USED TO MAINTAIN A SESSION WITH THE API 
*SUBSYSTEM. THE ADDRESS OF THE APCB IS INCLUDED IN THE 
*OPERAND FIELD OF AN AOPEN OR ACLOSE MACRO INSTRUCTION. 
APCB       DSECT      APPLICATION PROGRAM CONTROL BLOCK 
APCBTAG    DS   CL4             CONTROL BLOCK ID 
APCBSL     DS   F               CONTROL BLOCK LENGTH 
APCBAM     DS   X               ACCESS METHOD AND VERSION 
APCBAMSK   EQU  B'11110000'   ACCESS METHOD ID 
APCBATLI   EQU  1               TRANSPORT LAYER INTERFACE 
APCBAMAX   EQU  APCBATLI        MAXIMUM ACCESS METHOD ID 
APCBAVER   EQU  B'00001111'   ACCESS METHOD VERSION 
APCBFLAG   DS   X             FLAG BYTE 
APCBFSTP   EQU  B'10000000'     APPLID IS STEPNAME FROM TIOT 
APCBF31B   EQU  B'01000000'     AMODE=31 
APCBFANY   EQU  B'00100000'     RMODE=ANY 
APCBFOPN   EQU  B'00010000'     APCB IS OPEN 
APCBFERR   EQU  B'00001000'     PERMANENT ERROR FLAG 
APCBFTRM   EQU  B'00000100'     TASK TERMINATION IN PROGRESS 
APCBFECB   EQU  B'00000010'     ECB EVENT NOTIFY BLOCK 
APCBFBSY   EQU  B'00000001'     OPEN/CLOSE IN PROGRESS 
APCBOPTC   DS   X             OPTION CODE 
APCBOTRC   EQU  B'10000000'     OPTCD=NOTRACE|TRACE 
APCBOGTF   EQU  B'01000000'     OPTCD=NOGTF|GTF 
APCBABRT   EQU  B'00100000'     OPTCD=ABORT 
APCBAUTH   EQU  B'00010000'     OPTCD=AUTHEXIT 
*          EQU  B'00001000'     RESERVED 
*          EQU  B'00000100'     RESERVED 
*          EQU  B'00000010'     RESERVED 
*          EQU  B'00000001'     RESERVED 
           DS   X             RESERVED 
APBCENVR   DS   X             LANGUAGE ENVIRONMENT CODE 

Data Structures (Assembler Language)    D–3 



Assembler Language Definitions 

APCBASM    EQU  0               ASSEMBLER LANGUAGE 
APCBIBMC   EQU  1               IBM C 
APCBSASC   EQU  2               SAS C 
APCBPLI    EQU  3               PLI 
APCBCOBL   EQU  4               COBOL 
APCBFORT   EQU  5               FORTRAN 
APCBEMAX   EQU  APCBFORT        MAXIMUM ENVIRONMENT CODE 
APCBERRC   DS   X             ERROR CODE 
APCBECFG   EQU  1               SUBSYSTEM NOT CONFIGURED 
APCBEACT   EQU  2               SUBSYSTEM NOT ACTIVE 
APCBERDY   EQU  3               SUBSYSTEM NOT INITIALIZED 
APCBESTP   EQU  4               SUBSYSTEM IS STOPPING 
APCBEDRA   EQU  5               SUBSYSTEM IS DRAINING 
APCBEVCK   EQU  6               APCB VALIDITY CHECK ERROR 
APCBELER   EQU  7               INTERNAL LOGIC ERROR 
APCBEPRB   EQU  8               NOT ISSUED FROM PRB 
APCBEOPN   EQU  9               APCB ALREADY OPENED 
APCBECLS   EQU  10              APCB ALREADY CLOSED 
APCBEBSY   EQU  11              APCB IS BUSY WITH AOPEN/ACLOSE 
APCBEPER   EQU  12              APCB HAS PERMANENT ERROR 
APCBECVT   EQU  13              ACCESS METHOD CVT NOT AVAILABLE 
APCBEMEM   EQU  14              INSUFFICIENT MEMORY AVAILABLE 
APCBEENV   EQU  15              CANNOT INITIAL./TERMIN. ENVIR. 
APCBEBEG   EQU  16              CANNOT ESTABLISH API SESSION 
APCBEVER   EQU  17              INVALID ACCESS METHOD VERSION 
APCBEOPT   EQU  18              INVALID/UNSUPPORTED OPTION 
APCBEDUP   EQU  19              DUPLICATE SESSION FOR THIS AM 
APCBEAMD   EQU  20              AMODE INCONSISTENT WITH AOPEN 
APCBETRV   EQU  21              AMTV VALIDITY CHECK ERROR 
APCBEEND   EQU  22              CANNOT RELEASE API SESSION 
APCBDGNC   DS   XL2           DIAGNOSTIC CODE 
APCBAMCB   DS   A             ACCESS METHOD CONTROL BLOCK 
APCBAMCV   DS   A             ACCESS METHOD COMMUNICATION VECTOR 
APCBAMTV   DS   A             ACCESS METHOD UAS TRANSFER VECTOR 
APCBAMID   DS   CL4           ACCESS METHOD SUBSYSTEM ID 
           DS   F             RESERVED 
APCBEXLS   DS   A             APPLIC.-LEVEL EXIT LIST ADDRESS 
APCBACTX   DS   F             APPLIC.-LEVEL CONTEXT VARIABLE 
APCBECTX   DS   F             ENVIRO.-LEVEL CONTEXT VARIABLE 
APCBAPPL   DS   CL8           APPLICATION ID 
APCBPSWD   DS   CL8           APPLICATION PASSWORD 
APCBLEN    EQU  *-APCB        LENGTH OF APCB 

APCBXL (APCB Exit List) 
*THE FOLLOWING DSECT DEFINES THE AM-INDEPENDENT STRUCTURE 
*OF AN APCB EXIT LIST. IT IS NECESSARY TO DEFINE THIS 
*STRUCTURE AT THIS LEVEL SO AOPEN CAN VALIDITY CHECK THE 
*EXIT LIST. 
APCBXL     DSECT             COMMON EXIT LIST FORMAT 
APCBXLEN   DS    F           TOTAL LENGTH OF EXIT LIST 
APCBXLST   DS    0A          LIST OF EXIT ROUTINE ENTRY POINTS 

D–4    Assembler API Programmer Reference 



Assembler Language Definitions 

TEM (Transport Endpoint Error Message) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF 
*AN ERROR MESSAGE RETURNED BY THE TERROR MACRO INSTRUCTION. 
*THE INFORMATION RETURNED IS FORMATTED AS A MULTI-LINE WTO 
*PARAMETER LIST (WTO MF=L), AND CAN BE SUPPLIED DIRECTLY 
*TO A WTO MF=E MACRO INSTRUCTION. THE APPLICATION PROGRAM 
*MAY USE THIS DSECT TO MANIPULATE CERTAIN FIELDS WITHIN THE 
*PARAMETER LIST. 
TEM       DSECT             TRANSPORT ENDPOINT ERROR MESSAGE 
TEMTAG    DS   CL4          CONTROL BLOCK IDENTIFIER 
TEMSL     DS   F            SUBPOOL AND LENGTH 
TEMWTO    DS   0F           WTO PARAMETER LIST 
TEMSGLEN  DS   AL2          MESSAGE LENGTH + 4 (FIRST LINE) 
TEMMCSF1  DS   X            MCS FLAG BYTE #1 
TEMMCSF2  DS   X            MCS FLAG BYTE #2 
TEMSGTXT  DS   CL34         MESSAGE TEXT (FIRST LINE)  
          ORG  TEMSGTXT 
TEMSGID   DS   CL8            MESSAGE ID 
TEMSGBDY  DS   CL26           MESSAGE BODY 
          ORG 
TEMDESC   DS   BL.16        DESCRIPTOR CODES 
TEMROUT   DS   BL.16        ROUTING CODES 
TEMSGTYP  DS   XL2          MLWTO LINE TYPE (FIRST LINE) 
TEMAREA   DS   X            MLWTO AREA ID 
TEMNLINE  DS   AL1          MLWTO NUMBER OF LINES 
TEMMLLEN  DS   AL2          MLWTO LINE LENGTH + 4 
TEMMLTYP  DS   XL2          MLWTO LINE TYPE 
TEMMLTXT  DS   (*-*)C       MLWTO LINE TEXT 
TEMLEN    EQU  *-TEM        MINIMUM LENGTH OF MULTI-LINE TEM 

TIB (Transport Service Information Block)  
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF 
*TRANSPORT INFORMATION RETURNED BY THE TINFO (OPTCD=PRIMARY) 
*TRANSPORT SERVICE FUNCTION. THE FORMAT OF THIS INFORMATION 
*IS STANDARD FOR ALL TRANSPORT PROVIDERS, AND IS INTENDED TO 
*CONVEY THE BASIC CHARACTERISTICS OF THE UNDERLYING PROTOCOL 
*AND SERVICE. 
TIB       DSECT             TRANSPORT SERVICE INFORMATION BLOCK 
TIBTSDOM  DS   X            TRANSPORT SERVICE DOMAIN 
TIBDINET  EQU  2              DARPA INTERNET 
TIBDACP   EQU  4              ACP ONLY API 
TIBTSTYP  DS   X            TRANSPORT SERVICE TYPE 
TIBTCOTS  EQU  1              CONNECTION-MODE SERVICE 
TIBTCLTS  EQU  2              CONNECTIONLESS-MODE SERVICE 
TIBTRAW   EQU  3              RAW MODE SERVICE 
TIBTSCHR  DS   X              TRANSPORT SERVICE CHARACTERISTICS 
*         EQU  B'10000000'      RESERVED 
*         EQU  B'01000000'      RESERVED 
*         EQU  B'00100000'      RESERVED 
TIBCTSDU  EQU  B'00010000'      TSDU BOUNDARIES PRESERVED 
TIBCXPDT  EQU  B'00001000'      EXPEDITED DATA SUPPORTED 
TIBCOPTN  EQU  B'00000100'      USER-SETTABLE OPTS SUPPORTED 
TIBCCOND  EQU  B'00000010'      CONNECT USER DATA SUPPORTED 
TIBCDISD  EQU  B'00000001'      DISCONNECT USER DATA SUPPORTED 
TIBTSOPT  DS   X              TRANSPORT SERVICE OPTIONS 
TIBOASSO  EQU  B'10000000'      CLTS ASSOCIATIONS SUPPORTED 
TIBOSCND  EQU  B'01000000'      SECONDARY INFO. AVAILABLE 
TIBOSTAT  EQU  B'00100000'      STATISTICAL INFO. AVAILABLE 
TIBORLSE  EQU  B'00010000'      COTS ORDERLY RELEASE SUPPORTED 
*         EQU  B'00001000'      RESERVED 
*         EQU  B'00000100'      RESERVED 
*         EQU  B'00000010'      RESERVED 

Data Structures (Assembler Language)    D–5 



Assembler Language Definitions 

*         EQU  B'00000001'      RESERVED 
TIBSYSID  DS   CL4            TRANSPORT PROVIDER'S SUBSYS. NAME 
TIBSVCID  DS   CL8            TRANSPORT PROVIDER'S SERVICE NAME 
TIBPROTO  DS   F              TRANSPORT PROTOCOL NUMBER 
TIBQLSTN  DS   F              MAXIMUM SIZE OF LISTEN QUEUE 
TIBQSEND  DS   F              MAXIMUM SIZE OF SEND QUEUE 
TIBQRECV  DS   F              MAXIMUM SIZE OF RECEIVE QUEUE 
TIBLTSND  DS   F              MAXIMUM SIZE OF TSEND/TSENDTO DATA 
TIBLTRCV  DS   F              MAXIMUM SIZE OF TRECV/TRECVFR DATA 
TIBLSEND  DS   F              MAXIMUM SIZE OF SEND BUFFER 
TIBLRECV  DS   F              MAXIMUM SIZE OF RECEIVE BUFFER 
TIBLADDR  DS   F              MAXIMUM SIZE OF PROTOCOL ADDRESS 
TIBLOPTN  DS   F              MAXIMUM SIZE OF PROTOCOL OPTIONS 
TIBLTSDU  DS   F              MAXIMUM SIZE OF TRANSP. DATA UNIT 
TIBLXPDT  DS   F              MAXIMUM SIZE OF EXPED. DATA UNIT 
TIBLCONN  DS   F              MAXIMUM SIZE OF CONNECT DATA 
TIBLDISC  DS   F              MAXIMUM SIZE OF DISCONNECT DATA 
TIBLINFO  DS   F              MAXIMUM SIZE OF INFORMATION UNIT 
TIBLEN    EQU  *-TIB          LENGTH OF TIB 

TPA (Transport Protocol Address) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT 
*OF A TRANSPORT PROTOCOL ADDRESS IN THE INTERNET DOMAIN. 
*THIS INFORMATION IS TRANSPORT PROVIDER-DEPENDENT AND 
*IS NOT INTERPRETED BY API 
*  
*THE GENERAL FORMAT OF A TRANSPORT PROTOCOL ADDRESS IS: 
* 
*<DOMAIN><T-ADDR><N-ADDR> 
* 
*WHERE:  
* 
*DOMAIN = COMMUNICATION DOMAIN (SEE TOPEN) 
*T-ADDR = TRANSPORT LAYER ADDRESS OF ENDPOINT 
*N-ADDR = NETWORK LAYER ADDRESS OF TRANSPORT PROVIDER 
TPA       DSECT             TRANSPORT PROTOCOL ADDRESS 
TPAINET   DS   XL8          DOMAIN=INET TPA 
          ORG  TPAINET  
TPAINETD  DS   XL2          INTERNET DOMAIN 
TPAINETT  DS   XL2          TCP PORT NUMBER 
TPAINETN  DS   XL4          IP HOST ADDRESS 
          ORG 
LTPAINET  EQU  *-TPAINET     LENGTH OF INET TPA 

D–6    Assembler API Programmer Reference 



Assembler Language Definitions 

TPL (Transport Service Parameter List) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE OF THE TRANSPORT 
*SERVICE PARAMETER LIST (TPL) FOR ALL TRANSPORT SERVICE 
*FUNCTIONS. THE TPL BEGINS WITH A COMMON SECTION (I.E., THE 
*PARAMETER LIST PREFIX) WHICH IS PRESENT FOR ALL FUNCTIONS. 
TPL        DSECT          TRANSPORT SERVICE PARAMETER LIST 
TPLIDENT   DS   X         CONTROL BLOCK ID 
TPLIDSTD   EQU  234         STANDARD (LONG) FORMAT ID 
TPLIDSHT   EQU  235         SHORT FORMAT ID 
TPLIDEXT   EQU  236         EXTENDED FORMAT ID 
TPLFNCCD   DSX             FUNCTION CODE 
TFORG1     EQU  0            ORIGIN FOR STANDARD FUNCTIONS 
TFACCEPT   EQU  1            ACCEPT CONNECTION REQUEST 
TFADDR     EQU  2            ENABLE CONNECTIONS 
TFBIND     EQU  3            BIND PROTOCOL ADDRESS 
TFCLEAR    EQU  4            ACKNOWLEDGE DISCONNECT 
TFCLOSE    EQU  5            CLOSE ENDPOINT 
TFCONFRM   EQU  6            CONFIRM CONNECTION REQUEST 
TFCONNCT   EQU  7            INITIATE CONNECTION REQUEST 
TFDISCON   EQU  8            INITIATE DISCONNECT 
TFINFO     EQU  9            GET TRANSPORT INFORMATION 
TFLISTEN   EQU  10           LISTEN FOR CONNECTION REQUESTS 
TFOPEN     EQU  11           OPEN ENDPOINT 
TFOPTION   EQU  12           NEGOTIATE OPTIONS 
TFRECV     EQU  13           RECEIVE FROM CONNECTION 
TFRECVER   EQU  14           RECEIVE DATAGRAM ERROR 
TFRECVFR   EQU  15           RECEIVE DATAGRAM 
TFREJECT   EQU  16           REJECT CONNECTION REQUEST 
TFRELACK   EQU  17           ACKNOWLEDGE CONNECTION RELEASE 
TFRELESE   EQU  18           INITIATE CONNECTION RELEASE 
TFRETRCT   EQU  19           RETRACT PENDING LISTEN 
TFSEND     EQU  20           SEND TO CONNECTION 
TFSENDTO   EQU  21           SEND DATAGRAM 
TFUNBIND   EQU  22           UNBIND PROTOCOL ADDRESS 
TFUSER     EQU  23           ASSOCIATE USER ID 
TFMAX1     EQU  TFUSER       MAXIMUM FUNCTION ID 
TFORG2     EQU  127          ORIGIN FOR CONTROL FUNCTIONS 
TFERRORV   EQU  128          FORMAT ERROR MESSAGE VERBATIM 
TFCHECK    EQU  129          CHECK TPL FOR COMPLETION 
TFERROR    EQU  130          FORMAT ERROR MESSAGE 
TFSTATE    EQU  131          GET ENDPOINT STATE 
TFMAX2     EQU  TFSTATE      MAXIMUM FUNCTION ID 
TPLACTIV   DS   X          SEMAPHORE (TPL ACTIVE) 
TPLFLAGS   DS   X          FLAG BYTE 
TPLFCMPL   EQU  B'10000000'    TPL COMPLETED 
TPLFCERR   EQU  B'01000000'    COMPLETED WITH ERROR 
TPLFXECB   EQU  B'00100000'    TPLECBXR IS EXTERNAL ECB 
TPLFEXIT   EQU  B'00010000'    TPLECBXR IS EXIT ROUTINE 
TPLF31B    EQU  B'00001000'    REQUEST ISSUED WITH AMODE=31 
TPLFACPT   EQU  B'00000100'    ACCEPTING CONNECT INDICATION 
*          EQU  B'00000010'    RESERVED  
*          EQU  B'00000001'    RESERVED 
TPLEP      DS   F           ENDPOINT 
           ORG*-4 
TPLEPID    DS   0F             ENDPOINT ID 
TPLTCEP    DS   0A             TCEP ADDRESS 
           ORG*+4 
TPLECBXR   DS   A           IECB/XECB/EXIT 
           ORG*-4 
TPLECB     DS   0F          ECB PARAMETER 
TPLIECB    DS   0F             INTERNAL ECB 
TPLXECB    DS   0A             EXTERNAL ECB ADDRESS 
TPLEXIT    DS  0A           EXIT ROUTINE ADDRESS 
           ORG*+4 

Data Structures (Assembler Language)    D–7 



Assembler Language Definitions 

TPLOPTCD   DS   F           OPTION CODES 
           ORG  TPLOPTCD 
TPLOPCD1   DS   X             OPTION CODE #1 
TOASYNC    EQU  B'10000000'     OPTCD=SYNC|ASYNC 
TOSHORT    EQU  B'01000000'     OPTCD=LONG|SHORT 
TOTRUNC    EQU  B'00100000'     OPTCD=NOTRUNC|TRUNC 
TONEGOT    EQU  B'00010000'     OPTCD=NONEGOT|NEGOT 
TOMBUF     EQU  B'00001000'     OPTCD=NOMBUF|MBUF 
TONOBLOK   EQU  B'00000100'     OPTCD=BLOCK|NOBLOCK 
TOEXTEND   EQU  B'00000010'     OPTCD=EXTEND 
*          EQU  B'00000001'     RESERVED 
TPLOPCD2   DS   X             OPTION CODE #2  
TOMORE     EQU  B'10000000'     OPTCD=NOMORE|MORE 
TOEXPDTE   EQU  B'01000000'     OPTCD=NORMAL|EXPEDITE  
TONOTEOM   EQU  B'00100000'     OPTCD=EOM|NOTEOM 
TOABORT    EQU  B'00010000'     OPTCD=CLEAR|ABORT  
TOINDIR    EQU  B'00001000'     OPTCD=DIRECT|INDIR  
*          EQU  B'00000100'     RESERVED  
TOFULL     EQU  B'00000010'     OPTCD=NOFULL|FULL 
TOTIME     EQU  B'00000001'     OPTCD=NOTIME|TIME 
TPLOPCD3   DS   X             OPTION CODE #3 
TOACEE     EQU  B'10000000'     OPTCD=TUB|ACEE 
TOCIPHER  EQU  B'01000000'     OPTCD=PLAIN|CIPHER 
TOOLD     EQU  B'00100000'     OPTCD=NEW|OLD 
TOASSIGN  EQU  B'00010000'     OPTCD=USE|ASSIGN  
TOREMOTE  EQU  B'00001000'     OPTCD=LOCAL|REMOTE 
TOPASS    EQU  B'00000100'     OPTCD=DELETE|PASS  
*         EQU  B'00000010'     RESERVED 
*         EQU  B'00000001'     RESERVED 
TPLOPCD4  DS   X             OPTION CODE #4  
TOINFO    EQU  B'11000000'     TINFO OPTION CODES 
TOPRIMRY  EQU  0                 OPTCD=PRIMARY 
TOSCNDRY  EQU  1                 OPTCD=SECNDRY 
TOSTATS   EQU  2                 OPTCD=STATS 
TOOPTION  EQU  B'00110000'     TOPTION OPTION CODES 
TODECLAR  EQU  0                 OPTCD=DECLARE  
TOVERIFY  EQU  1                 OPTCD=VERIFY  
TOQUERY   EQU  2                 OPTCD=QUERY 
TODFAULT  EQU  3                 OPTCD=DEFAULT  
TOAPI     EQU  B'00001000'       OPTCD=TP|API  
*         EQU  B'00000100'       RESERVED  
*         EQU  B'00000010'       RESERVED  
*         EQU  B'00000001'       RESERVED 
TPLRTNCD  DS   F               COMPOSITE RETURN CODE  
          ORG  TPLRTNCD 
TPLACTCD  DS   X                 RECOVERY ACTION CODE 
TAOKAY    EQU  0                   SUCCESSFUL COMPLETION 
TAEXCPTN  EQU  4                   EXCEPTIONAL CONDITION 
TAINTEG   EQU  8                   CONNECTION/DATA INTEG. ERROR 
TAENVIRO  EQU  12                  ENVIRONMENTAL CONDITION 
TAFORMAT  EQU  16                  FORMAT OR SPECIF. ERRORS 
TAPROCED  EQU  20                  SEQUENCE AND PROCED. ERRORS 
TATPLERR  EQU  24                  LOGIC ERRORS W/NO TPL RTNCD 
TAUSER    EQU  28                  USER-DEFINED ACTION CODES 
TPLERRCD  DS   X                 SPECIFIC ERROR CODE 
TCOKAY    EQU  B'00000000'         00: NO CONDITIONALS 
TCVERIFY  EQU  B'10000000'         00: OPTIONS DID NOT VERIFY 
TCNEGOT   EQU  B'01000000'         00: OPTIONS NEGOTIATED 
TCTRUNC   EQU  B'00100000'         00: BUFFER TRUNCATED 
TCSTOP    EQU  B'00001000'         00: SUBSYSTEM STOPPING 
TCTIME    EQU  B'00000100'         00: TIMEOUT EXPIRED 
TENONEGO  EQU  6                   04: NO NEGOTIATION ALLOWED 
TENOBLOK  EQU  9                   04: NO BLOCKING ALLOWED 
TENOLSTN  EQU  10                  04: NO LISTEN PENDING 
TEPROTO   EQU  1                   08: PROTOCOL ERROR 
TEOVRFLO  EQU  2                   08: BUFFER OVERFLOW 

D–8    Assembler API Programmer Reference 



Assembler Language Definitions 

TEDISCON  EQU  3                   08: DISCONNECT RECEIVED 
TERELESE  EQU  4                   08: ORDERLY RELEASE RCVD. 
TEOVLAY   EQU  5                   08: CONTROL BLOCK OVERLAID 
TEFLOW    EQU  9                   08: TEMPORARY FLOW CONTROL 
TERETRCT  EQU  10                  08: LISTEN RETRACTED 
TEPURGED  EQU  11                  08: PURGED BY TCLOSE 
TESYSERR  EQU  1                   12: SYSTEM ERROR 
TESUBSYS  EQU  2                   12: SUBSYSTEM ERROR 
TENOTCNF  EQU  3                   12: SUBSYS NOT INSTALLED 
TENOTACT  EQU  4                   12: SUBSYS NOT ACTIVE 
TENOTRDY  EQU  5                   12: SUBSYS NOT INITIALIZED 
TEDRAIN   EQU  6                   12: SUBSYS DRAINED BY OPER. 
TESTOP    EQU  7                   12: SUBSYS STOPPED BY OPER. 
TETERM    EQU  8                   12: SUBSYS ABNORMALLY TERM. 
TEUNSUPO  EQU  9                   12: UNSUPPORTED OPT./FACIL. 
TEUNSUPF  EQU  10                  12: UNSUPPORTED FUNC./SVC. 
TEUNAVBL  EQU  11                  12: UNAVAILABLE SVC./FACIL. 
TEUNAUTH  EQU  12                  12: USER UNAUTHORIZED 
TERSOURC  EQU  13                  12: INSUFFICIENT RESOURCES 
TEINUSE   EQU  14                  12: PROTOCOL ADDRESS IS ALREADY ENABLED 
TEUSRXIT  EQU  15                  12: FAILED BY USER EXIT 
TEBDOPCD  EQU  1                   16: INVLD OPTION CODE 
TEBDEPID  EQU  2                   16: INVLD ENDPOINT ID 
TEBDXECB  EQU  3                   16: INVLD ECB/EXIT ADDR. 
TEBDDOM   EQU  4                   16: INVLD COMM. DOMAIN 
TEBDPROT  EQU  5                   16: INVLD TRANSPRT PROTO. 
TEBDTYPE  EQU  6                   16: INVLD TRANSPRT SVC TYPE 
TEBDXLST  EQU  7                   16: INVLD EXIT LIST 
TEBDUSER  EQU  8                   16: INVLD USER PARM 
TEBDACEE  EQU  9                   16: INVLD ACCESSOR ELEMENT 
TEBDSQNO  EQU  10                  16: INVLD SEQUENCE NUMBER 
TEBDQLEN  EQU  11                  16: INVLD QUEUE LENGTH 
TEBDTCB   EQU  12                  16: INVLD TCB ADDRESS 
TEBDASCB  EQU  13                  16: INVLD ASCB ADDRESS 
TEBDADDR  EQU  14                  16: INVLD PROTOCOL ADDRESS 
TEBDOPTN  EQU  15                  16: INVLD OPTIONS 
TEBDDATA  EQU  16                  16: INVLD DATA BUFFER 
TEBDTSID  EQU  18                  16: INVLD TRANSPORT SVC. ID 
TESTATE   EQU  1                   20: INVLD STATE FOR FUNC. 
TEINEXIT  EQU  2                   20: INVLD FUNC. WITHIN EXIT 
TEINACTV  EQU  3                   20: CHECK ISSUED TO INACT. TPL 
TEINCMPL  EQU  4                   20: ENDPOINT HAS INCOMPL. FNC 
TEINDICA  EQU  5                   20: PENDING CONNECT INDICA. 
TEBUFOVR  EQU  6                   20: SEND/RCV. BUFFER OVERRUN 
TEREQOVR  EQU  7                   20: SEND/RCV. RQST. OVERRUN 
TENOCONN  EQU  8                   20: NO CONNECT INDICATION 
TENODISC  EQU  9                   20: NO DISCONNECT INDICA. 
TEOUTSEQ  EQU  10                  20: REQUEST OUT OF SEQUENCE 
TENOERR   EQU  11                  20: NO ERROR INDICATION 
TEAMODE   EQU  13                  20: AMODE CONFLICTS W/ APCB 
TEOWNER   EQU  14                  20: NOT OPENED BY THIS TASK 
TELISTEN  EQU  15                  20: LISTEN QUEUE FULL 
TEACCEPT  EQU  16                  20: ACCEPTING TO ENDPOINT 
TEB4EXIT  EQU  1                   24:TPL CHECKED BEFORE EXIT 
TEACTIVE  EQU  2                   24:TPL IS STILL ACTIVE 
TPLDGNCD  DS   H               DIAGNOSTIC AND SENSE CODES 
TPLMIN    EQU  *-TPL         MINIMUM TPL LENGTH  
TLRELACK  EQU  *-TPL         LENGTH OF SHORT TPL: TRELACK 
TLRELESE  EQU  *-TPL         LENGTH OF SHORT TPL: TRELEASE 
TLRETRCT  EQU  *-TPL         LENGTH OF SHORT TPL: TRETRACT 
TLUNBIND  EQU  *-TPL         LENGTH OF SHORT TPL: TUNBIND 
TPLPARM   DS   XL(4*3)       FIXED-LENGTH FUNCTION PARAMETERS 
          ORG  TPLPARM 
TPLPARM1  DS   F               PARAMETER #1 
          ORG  *-4 
TPLQLSTN  DS   0F                LISTEN QUEUE LENGTH 

Data Structures (Assembler Language)    D–9 



Assembler Language Definitions 

TPLSEQNO  DS   0F                SEQUENCE NUMBER 
TPLTCB    DS   0A                TCB ADDRESS 
TPLMBUFO  DS   0A                OPTCD=MBUF MBUF OFFSET 
          ORG  *+4 
TPLPARM2  DS   F               PARAMETER #2 
          ORG  *-4 
TPLNEWEP  DS   0F                NEW ENDPOINT 
TPLASCB   DS   0A                ASCB ADDRESS 
TPLCOUNT  DS   0F                RESIDUAL BYTE COUNT  
          ORG  *+4 
TPLPARM3  DS   F               PARAMETER #3 
          ORG  *-4 
TPLUSER   DS   0A                TUB OR ACEE ADDRESS 
TPLDISCD  DS   0F                DISCONNECT REASON CODE 
TPLDGERR  DS   0F                DATAGRAM ERROR CODE 
TPLSTATE  DS   0F                OLD ENDPOINT STATE 
TPLXCNT   DS   0F                XDATA RESIDUAL COUNT 
          ORG  *+4 
TLACCEPT  EQU  *-TPL      LENGTH OF SHORT TPL: TACCEPT  
TLCLEAR   EQU  *-TPL      LENGTH OF SHORT TPL: TCLEAR 
TLCLOSE   EQU  *-TPL      LENGTH OF SHORT TPL: TCLOSE 
TLDISCON  EQU  *-TPL      LENGTH OF SHORT TPL: TDISCON 
TLREJECT  EQU  *-TPL      LENGTH OF SHORT TPL: TREJECT 
TLUSER    EQU  *-TPL      LENGTH OF SHORT TPL: TUSER 
TPLVAPAR  DS   XL(8*3)    VARIABLE-LENGTH FUNCTION PARMS 
          ORG  TPLVAPAR 
TPLADDR   DS   XL(4*2)      PROTOCOL ADDRESS PARAMETER  
          ORG  TPLADDR 
TPLADBUF  DS   A              PARAMETER ADDRESS 
TPLADLEN  DS   F              PARAMETER LENGTH  
TLADDR    EQU  *-TPL      LENGTH OF SHORT TPL: TADDR  
TLBIND    EQU  *-TPL      LENGTH OF SHORT TPL: TBIND 
TLCONFRM  EQU  *-TPL      LENGTH OF SHORT TPL: TCONFIRM 
TLCONNCT  EQU  *-TPL      LENGTH OF SHORT TPL: TCONNECT 
TLLISTEN  EQU  *-TPL      LENGTH OF SHORT TPL: TLISTEN 
TLRECVER  EQU  *-TPL      LENGTH OF SHORT TPL: TRECVERR 
TPLDATA   DS   XL(4*2)      USER DATA PARAMETER 
          ORG  TPLDATA 
TPLDABUF  DS   A              PARAMETER ADDRESS 
TPLDALEN  DS   F              PARAMETER LENGTH  
TLINFO    EQU  *-TPL      LENGTH OF SHORT TPL: TINFO 
TLRECV    EQU  *-TPL      LENGTH OF SHORT TPL: TRECV 
TLRECVFR  EQU  *-TPL      LENGTH OF SHORT TPL: TRECVFR 
TLSEND    EQU  *-TPL      LENGTH OF SHORT TPL: TSEND 
TLSENDTO  EQU  *-TPL      LENGTH OF SHORT TPL: TSENDTO 
TPLOPTN   DS   XL(4*2)      OPTIONS PARAMETER 
          ORG  TPLOPTN 
TPLOPBUF  DS   A              PARAMETER ADDRESS 
TPLOPLEN  DS   F              PARAMETER LENGTH  
TLOPTION  EQU  *-TPL      LENGTH OF SHORT TPL: TOPTION 
          ORG  TPLLEN 
          EQU  *-TPL      STANDARD (LONG) TPL LENGTH 
*THE TPL FORMAT FOR TOPEN DIFFERS FROM THAT USED BY THE  
*OTHER TRANSPORT SERVICE FUNCTIONS. IN PARTICULAR, FUNCTION 
*ARGUMENTS UNIQUE TO TOPEN OVERLAY THE VARIABLE-LENGTH  
*PARAMETER SECTION AS DEFINED BELOW. 
          ORG  TPLVAPAR 
TPLDOM    DS   X           COMMUNICATION DOMAIN  
TDINETO   EQU  1           DARPA INTERNET PRE 3.1 
TDINET    EQU  2           DARPA INTERNET 
TDACP     EQU  4           ACP TASK GROUP DOMAIN 
TDMAX     EQU  TDACP       MAXIMUM VALUE FOR DOMAIN 
TPLOFLAG  DS   X           OPEN FLAGS/ENVIRONMENT 
TPLOFPRO  EQU  B'10000000'   PROTOCOL NUMBER SPECIFIED 
TPLOFORD  EQU  B'01000000'   COTS ORDERLY RELEASE REQUIRED 
TPLOFASO  EQU  B'00100000'   CLTS ASSOCIATIONS REQUIRED 

D–10    Assembler API Programmer Reference 



Assembler Language Definitions 

TPLOFECB  EQU  B'00010000'   EVENT LIST SPECIFIED 
TPLOFSOC  EQU  B'00001000'   MODE=SOCKETS 
*         EQU  B'00000100'   RESERVED 
*         EQU  B'00000010'   RESERVED 
*         EQU  B'00000001'   RESERVED 
TPLSERVC  DS   H         TRANSPORT SERVICE REQUESTED 
          ORG  *-2 
TPLTYPE   DS   0H          TRANSPORT SERVICE TYPE 
TTCOTS    EQU  1             CONNECTION-MODE SERVICE 
TTCLTS    EQU  2             CONNECTIONLESS-MODE SVC. 
TTRAW     EQU  3             RAW-MODE SERVICE 
TTMAX     EQU  TTRAW         MAX. VALUE FOR SERVICE TYPE 
TPLPROTO  DS   0H          TRANSPORT PROTOCOL NUMBER 
          ORG  *+2 
TPLAPCB   DS   A         APCB ADDRESS FOR API SESSION 
TPLSVCID  DS   CL8       PROVIDER'S SERVICE NAME 
TPLEXLST  DS   A         ADDRESS OF EXIT LIST 
TPLUCNTX  DS   F         ONE WORD OF USER CONTEXT  
TLOPEN    EQU  *-TPL     LENGTH OF SHORT TPL: TOPEN 
          ORG 
TPLMAX    EQU  *-TPL      MAXIMUM TPL LENGTH 
*GENERAL RETURN CODES (RETURNED IN R15) ARE USED TO INDICATE  
*SUCCESSFUL OR UNSUCCESSFUL COMPLETION OF A FUNCTION IN  
*SYNCHRONOUS MODE, AND ACCEPTANCE OR NON-ACCEPTANCE OF A 
*FUNCTION IN ASYNCHRONOUS MODE. 
TROKAY    EQU  0          SUCCESSFUL COMPLETION/ACCEPTED  
TRFAILED  EQU  4          UNSUCCESS. COMPLETION/NOT ACCPT. 
TRFATLFC  EQU  8          INVALID FUNCTION CODE 
TRFATLPL  EQU  12         FATAL TPL ERROR 
TRFATLAM  EQU  16         FATAL ACCESS METHOD ERROR 
TRFATLAP  EQU  20         APCB IS CLOSED 
TRUSER    EQU  24         FIRST USER RETURN CODE 
* 
*THE DISCONNECT REASON CODE RETURNED INTPLDISCD 
*AND DATAGRAM ERROR CODE RETURNED IN TPLDGERR ARE 
*PROVIDER-DEPENDENT. 
* 
* 
*THE FOLLOWING DISCONNECT REASON CODES MAY BE  
*RETURNED BY THE API FOR INTERNET DOMAIN 
*(DOMAIN=INET)  
* 
TDTRANTO  EQU  1          TRANSMISSION TIMEOUT 
TDHOSTUN  EQU  2          HOST UNREACHABLE 
TDPORTUN  EQU  3          PORT UNREACHABLE 
TDRABORT  EQU  4          REMOTE ABORT 
TDLNIDWN  EQU  5          LOCAL NETWORK I/F DOWN 
TDPROTUN  EQU  6          PROTOCOL UNREACHABLE 
TDACPRR   EQU  7          ACP CONNECTION ERROR 
TDAPIRR   EQU  8          API CONNECTION ERROR 
TDNETUN   EQU  9          NET UNREACHABLE 
TDNOFRAG  EQU  10         FRAGMENTATION NEEDED/DF 
TDSRFAIL  EQU  11         SOURCE ROUTE FAILED 

Data Structures (Assembler Language)    D–11 



Assembler Language Definitions 

* 
*TPL EXTENSION 
* 
TPLPRM1X  DS   F          TPLPARM1 - ALET OR EXTENSION 
TPLPRM2X  DS   F          TPLPARM2 - ALET OR EXTENSION 
TPLPRM3X  DS   F          TPLPARM3 - ALET OR EXTENSION 
          ORG  TPLPARM3X 
TPLUSALT  DS   F          USER - ALET 
          ORG  , 
TPLADALT  DS   F          ADBUF - ALET 
TPLDAALT  DS   F          DAFUF - ALET 
TPLOPALT  DS   F          OPBUF - ALET 
TPLXDIAG  DS   F          EXTENDED DIAGNOSTIC CODE 
TPLEXLEN  EQU  *          LENGTH OF EXTENDED TPL 

TPO (Transport Protocol Options) 
AM=TLI TRANSPORT PROTOCOL OPTIONS (TPO)  
****************************************************************** 
*-- TPO --  
* 
*AM=TLI TRANSPORT PROTOCOL OPTIONS  
****************************************************************** 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE FOR SPECIFYING   
*OPTIONS ASSOCIATED WITH A TRANSPORT SERVICE FUNCTION.   
*GENERALLY SUCH OPTIONS WILL BE INDICATED WITH THE OPLEN   
*AND OPBUF OPERANDS OF A TRANSPORT SERVICE MACRO INSTRUCTION.  
*  
*MORE THAN ONE OPTION MAY BE SPECIFIED IN A SINGLE MACRO   
*INSTRUCTION WHERE EACH OPTION IS FORMATTED IN ACCORDANCE   
*WITH THE FOLLOWING DSECT. OPBUF POINTS TO THE FIRST OPTION  
*IN THE LIST, AND OPLEN IS THE TOTAL LENGTH OF THE OPTION   
*LIST.  
TPO       DSECT                 TRANSPORT PROTOCOL OPTIONS 
TPOPTLEN  DS   H                LENGTH OF THIS OPTION 
TPOPTION  DS   H                OPTION NAME (I.E., NUMBER) 
*  
*     API-SPECIFIC OPTIONS  
* 
TPOAQSND  EQU  0                 MAXIMUM NUMBER OF SENDS 
TPOAQRCV  EQU  1                 MAXIMUM NUMBER OF RECEIVES 
TPOALSND  EQU  2                 LENGTH OF SEND BUFFER 
TPOALRCV  EQU  3                 LENGTH OF RECEIVE BUFFER 
TPOAMAX   EQU  TPOALRLN          MAXIMUM OPTION NUMBER 
*  
*     ACP-PROVIDER-SPECIFIC OPTIONS  
* 
TPOPRWND  EQU  1                 TCP RECEIVE WINDOW 
TPOPKTIM  EQU  2                 KEEPALIVE TIME 
TPOPKEEP  EQU  3                 KEEPALIVE OPTIONS 
TPOPDNAG  EQU  4                 DEFEAT NAGLE ALGORITHM 
TPOPRWND  EQU  1                 TCP RECEIVE WINDOW 
TPOPKTIM  EQU  2                 KEEPALIVE TIME 
TPOPKEEP  EQU  3                 KEEPALIVE OPTIONS 
TPOPDNAG  EQU  4                 DEFEAT NAGLE ALGORITHM 
TPOPRTIM  EQU  5                 FULL RECEIVE TIMEOUT 
TPOIPOPT  EQU  6                 IP OPTIONS 
TPOSIOAR  EQU  7                 SOCKET ADD ROUTE 
TPOSIODR  EQU  8                 SOCKET DELETE ROUTE 
TPOSIFCF  EQU  9                 SOCKET INTERFACE CONFIG 
TPOSIFLG  EQU  10                SOCKET INTERFACE FLAGS 
TPOSIFMT  EQU  11                SOCKET INTERFACE MTU 
TPOSIFME  EQU  12                SOCKET INTERFACE METRIC 
TPOSIFNM  EQU  13                SOCKET IFC NETWORK MASK 

D–12    Assembler API Programmer Reference 



Assembler Language Definitions 

TPOSIFBA  EQU  14                SOCKET BROADCAST ADDR 
TPOSIFAD  EQU  15                SOCKET IFC ADDRESS 
TPOSIFEN  EQU  16                SOCKET IFC ENET ADDRESS 
TPOSIFNO  EQU  17                NUMBER OF INTERFACES 
TPOSIFDS  EQU  18                DESTINATION ADDRESS 
TPOIPTTL  EQU  19                IP TIME TO LIVE 
TPOIPTOS  EQU  20                IP TYPE OF SERVICE 
TPOTPMSS  EQU  21                TCP MAXIMUM SEGMENT SIZE 
TPOIPDNR  EQU  22                IP DO NOT ROUTE 
TPOIPBRO  EQU  23                IP BROADCAST 
TPOUDSUM  EQU  24                UDP CHECKSUMS 
TPOTQSND  EQU  25                MAXIMUM NUMBER OF SENDS 
TPOTQRCV  EQU  26                MAXIMUM NUMBER OF RECEIVES 
TPOTLSND  EQU  27                LENGTH OF SEND BUFFER 
TPOTLRCV  EQU  28                LENGTH OF RECEIVE BUFFER 
TPOREUSE  EQU  29                REUSE ADDRESS 
TPOIMIF   EQU  30                SAW_IP_MULTICAST_IF (UNSUPPORTED) 
TPOIMTTL  EQU  31                SAW_IP_MULTICAST_TTL (UNSUPPORTED) 
TPOIMLOO  EQU  32                SAW_IP_MULTICAST_LOOP (UNSUPPORTED) 
TPOIADDM  EQU  33                SAW_IP_ADD_MEMBERSHIP (UNSUPPORTED) 
TPOIDRPM  EQU  34                SAW_IP_DROP_MEMBERSHIP (UNSUPPORTED) 
TPOUDATA  EQU  35                User Data 
TPOACCON  EQU  36                SO_ACCEPTCONN option 
TPORCVLW  EQU  37                SO_RCVLOWAT option 
TPOSNDLW  EQU  38                SO_SNDLOWAT option 
TPOIPHDR  EQU  39                IP_HDRINCL option 
TPOFIONR  EQU  40                FIONREAD option 
TPOTMAX   EQU  TPOFIONR          MAXIMUM OPTION NUMBER 
TPOVALUE  DS   (*-*)X            OPTION VALUE  

TSW – Transport Endpoint State Word  
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT   
*OF THE STATE WORD RETURNED BY THE TSTATE FUNCTION. THE   
*STATE WORD CONTAINS STATUS FLAGS REPRESENTING PENDING   
*ACTIVITY ON THE ENDPOINT, AND A HALFWORD STATE VALUE   
*WHICH REPRESENTS THE STATE OF THE ENDPOINT AT THE MOST   
*RECENT SUCCESSFUL COMPLETION OF A TRANSPORT SERVICE   
*FUNCTION.  
TSW       DSECT              TRANSPORT ENDPOINT STATE WORD 
TSWSTATF  DC   X'00'         STATUS FLAGS 
TSWFCHNG  EQU  B'10000000'     STATE IS CHANGING 
TSWFACPT  EQU  B'01000000'     ACCEPTING TO THIS ENDPOINT  
TSWOPNO   EQU  B'00100000'     OPENING OLD TO THIS EP 
*         EQU  B'00010000'     RESERVED  
*         EQU  B'00001000'     RESERVED  
*         EQU  B'00000100'     RESERVED  
*         EQU  B'00000010'     RESERVED  
*         EQU  B'00000001'     RESERVED 
TSWPENDF  DC   X'00'         PENDING FUNCTION INDICATORS 
TSWPFCLS  EQU  B'10000000'     TCLOSE DELETE 
TSWPFDIS  EQU  B'01000000'     TDISCONN, TCLEAR, TRETRACT 
TSWPFREL  EQU  B'00100000'     TRELEASE 
TSWPFACK  EQU  B'00010000'     TRELACK 
TSWPFCON  EQU  B'00001000'     CONNECTION ESTABLISHMENT FNC 
TSWPFLCL  EQU  B'00000100'     LOCAL ENDPOINT MANAGEMENT FNC  
TSWPFPAS  EQU  B'00000010'     TCLOSE PASS 
TSWPFOPN  EQU  B'00000001'     TOPEN 
TSWPFRCV  EQU  B'00000000'     TRECV 
TSWPFSND  EQU  B'00000000'     TSEND 
TSWPFDGM  EQU  B'00000000'     TRECVFR, TSENDTO, TRECVERR 
TSWSTATE  DC   H'0'          CURRENT ENDPOINT STATE 
TSCLOSED  EQU  0               CLOSED (NON-EXISTENT) 
TSOPENED  EQU  1               OPENED (NOT BOUND) 

Data Structures (Assembler Language)    D–13 



Assembler Language Definitions 

TSDSABLD  EQU  2               DISABLED (BOUND, QLSTN EQ 0) 
TSENABLD  EQU  3               ENABLED (BOUND, QLSTN GT 0) 
TSINCONN  EQU  4               CONNECT INDICATION PENDING 
TSOUCONN  EQU  5               CONNECT IN PROGRESS 
TSCONNCT  EQU  6               CONNECTED (OR ASSOCIATED) 
TSINRLSE  EQU  7               RELEASE INDICATION PENDING 
TSOURLSE  EQU  8               RELEASE IN PROGRESS 
TSMAX     EQU  TSOURLSE        MAXIMUM STATE VALUE 
TSWLEN    EQU  *-TSW           LENGTH OF TSW 

TUB (Transport Endpoint User Block) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF   
*USER ID PARAMETERS REQUIRED FOR ASSOCIATING A USER WITH   
*AN ENDPOINT. THIS STRUCTURE SHOULD BE PROVIDED AS AN   
*ARGUMENT TO TOPEN AND TUSER WHEN AN ACCESSOR ENVIRONMENT   
*ELEMENT (ACEE) IS NOT AVAILABLE OR APPROPRIATE.  
TUB       DSECT                TRANSPORT ENDPOINT USER BLOCK 
TUBUID    DS   XL9               USER ID  
          ORG  TUBUID 
TUBUIDL   DS   X                   USER ID LENGTH 
TUBUIDC   DS   CL8                 USER ID CHARACTER STRING 
          ORG 
TUBGRP    DS   XL9               GROUP NAME 
          ORG  TUBGRP 
TUBGRPL   DS   X                   GROUP NAME LENGTH 
TUBGRPC   DS   CL8                 GROUP NAME CHARACTER STRING 
          ORG 
TUBPWD    DS   XL9               PASSWORD 
          ORG  TUBPWD 
TUBPWDL   DS   X                   PASSWORD LENGTH 
TUBPWDC   DS   CL8                 PASSWORD CHARACTER STRING 
          ORG 
TUBLEN    EQU  *-TUB             LENGTH OF TUB 

D–14    Assembler API Programmer Reference 



Assembler Language Definitions 

TXL (Transport Endpoint Exit Lis) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF   
*THE EXIT LIST PROVIDED BY THE APPLICATION PROGRAM AS AN   
*ARGUMENT OF THE TOPEN AND AOPEN MACRO INSTRUCTIONS. EACH   
*ENTRY IS THE ADDRESS OF AN EXIT ROUTINE WHICH IS TO RECEIVE   
*CONTROL WHEN A PARTICULAR EVENT OCCURS. IF THE VALUE OF   
*AN ENTRY IS ZERO, THE CORRESPONDING EXIT ROUTINE IS NOT   
*DEFINED. THE EXIT LIST CAN BE GENERATED BY A TEXLST MACRO   
*INSTRUCTION.  
TXL        DSECT              TRANSPORT ENDPOINT EXIT LIST 
TXLLENXL   DS   F             LENGTH OF EXIT LIST 
TXLEXITS   DS   0A            LIST OF EXIT ROUTINES 
TXLPROTO   DS   10A             PROTOCOL EVENT EXITS 
           ORG  TXLPROTO 
TXLCONN    DS   A                 CONNECT INDICATION 
TXLCONF    DS   A                 CONFIRM INDICATION 
TXLDATA    DS   A                 NORMAL DATA INDICATION 
TXLXDATA   DS   A                 EXPEDITED DATA INDICATION 
TXLDGERR   DS   A                 DATAGRAM ERROR INDICATION 
TXLDISC    DS   A                 DISCONNECT INDICATION 
TXLRELSE   DS   A                 RELEASE INDICATION 
TXLSWIND   DS   A                 WINDOW OPEN INDICATION 
           DS   2A                RESERVED 
           ORG 
TXLTPEND   DS   A                 PROVIDER END EXIT 
           DS   2A                RESERVED 
           DS   H                 RESERVED 
TXLFECB    DS   H                 EVENT is ECB Flags 
TXLFECI    EQU  X'8000'           Connect Ind. event is ECB 
TXLFECF    EQU  X'4000'           Confirm event is ECB 
TXLFEDA    EQU  X'2000'           Data Ind. event is ECB 
TXLFEXD    EQU  X'1000'           Expedited data event is ECB  
TXLFEDE    EQU  X'0800'           Datagram error event is ECB 
TXLFEDI    EQU  X'0400'           Disconnect event is ECB  
TXLFERL    EQU  X'0200'           Release Ind. event is ECB 
TXLFESW    EQU  X'0100'           Send window opened is ECB  
TXLFETP    EQU  X'0080'           TPEND event is an ECB 
TXLLENTO   EQU  *-TXL         LENGTH OF TOPEN EXIT LIST 
*THE FOLLOWING EXITS CAN ONLY BE SPECIFIED IN AN AOPEN 
*EXIT LIST.  
TXLERROR   DS   2A              SYNCHRONOUS ERROR EXITS 
           ORG  TXLERROR 
TXLSYNAD   DS   A                 PHYSICAL ERRORS 
TXLLERAD   DS   A                 LOGICAL ERRORS 
           ORG 
TXLAPEND   DS   A               API SUBSYSTEM END EXIT 
           DS   2A              RESERVED 
TXLLENAO   EQU  *-TXL         LENGTH OF AOPEN EXIT LIST 
TXLLEN     EQU  *-TXL         MAXIMUM LENGTH OF TXL 

Data Structures (Assembler Language)    D–15 



Assembler Language Definitions 

TXP (Transport Endpoint Exit Parameters) 
*THE FOLLOWING DSECT DEFINES THE STRUCTURE AND CONTENT OF   
*THE PARAMETER LIST WHOSE ADDRESS IS PASSED IN R1 TO THE   
*TPEND AND ALL PROTOCOL EVENT EXIT ROUTINES. A TPL ADDRESS   
*IS PASSED IN R1 TO THE SYNAD, LERAD, AND TPL COMPLETION   
*EXIT ROUTINES.  
TXP       DSECT            TRANSPORT ENDPOINT EXIT PARAMETERS 
TXPTYPE   DS   H           EXIT TYPE 
TXPTPROT  EQU  1             PROTOCOL EVENT EXIT 
TXPTCMPL  EQU  2             ENDPOINT COMPLETION EXIT 
TXPTPEND  EQU  3             PROVIDER END EXIT 
TXPTSYNC  EQU  4             SYNCHRONOUS ERROR EXIT 
TXPAPEND  EQU  5             SUBSYSTEM END EXIT  
          DS   H           RESERVED 
TXPEP     DS   F           ENDPOINT 
          ORG  *-4 
TXPEPID   DS   0F          ENDPOINT ID 
TXPTCEP   DS   0A          TCEP ADDRESS 
TXPAPCB   DS   0A          APCB ADDRESS FOR APEND 
          ORG  *+4 
TXPEXIT   DS   A           EXIT ROUTINE ENTRY POINT 
TXPPARM   DS   F           EXIT PARAMETER 
          ORG  *-4 
TXPEVENT  DS   0F            PROTOCOL EVENT CODE 
TXPECONN  EQU  0               CONNECT INDICATION 
TXPECONF  EQU  4               CONFIRM INDICATION 
TXPEDATA  EQU  8               NORMAL DATA INDICATION 
TXPEXPDT  EQU  12              EXPEDITED DATA INDICATION 
TXPERROR  EQU  16              DATAGRAM ERROR INDICATION 
TXPEDISC  EQU  20              DISCONNECT INDICATION 
TXPERLSE  EQU  24              ORDERLY RELEASE INDICATION 
TXPESWND  EQU  28              SEND WINDOW OPEN 
TXPREASN  DS   0F            TPEND REASON CODE 
TXPRDRAN  EQU  0               OPERATOR DRAINED SUBSYSTEM 
TXPRSTOP  EQU  4               OPERATOR STOPPED SUBSYSTEM 
TXPRTERM  EQU  8               SUBSYS. ABNORM. TERMINATED 
TXPTPL    DS   0A            COMPLETION TPL ADDRESS 
          ORG  *+4 
TXPACNTX  DS   F           APPLICATION-LEVEL CONTEXT 
TXPUCNTX  DS   F           USER-LEVEL (ENDPOINT) CONTEXT 
TXPECNTX  DS   F           ENVIRONMENT-LEVEL CONTEXT 
TXPLEN    EQU  *-TXP       LENGTH OF TXP 
TXPPARM2  DS   F              SECOND PARAMETER WORD 
TXPCOUNT  EQU  TXPPARM2,4     DATA/SEND WINDOW COUNT 

D–16    Assembler API Programmer Reference 



  

 

 Index 

 

A 

acknowledgments 
confirm indication, 1-66 
disconnect indication, 1-53 
orderly release indication, 1-205 

ACLOSE macro, 1-16, B-3 
error codes, 1-17 
unsuccessful completion return codes, 1-17 

actions for various macro instruction forms, 1-9 

alternative API macro instructions, 1-8 

AOPEN macro, 1-18, B-3 
APCB error codes, 1-20 
unsuccessful completion return codes, 1-19 

APCB macro, 1-22, B-3 
error codes 

for ACLOSE, 1-17 
for AOPEN, 1-20 

APEND reason codes, 1-105 

API 
dummy control sections, 1-84 
endpoint states (in TPL DSECT), 1-242 
macro forms supported by, A-2 
macros 

integer notes, B-2 
MF operands supported by, A-3 
operand format, B-1 
recognized instruction forms, A-1 

sessions with subsystem, 1-18 
subsystem sessions, 1-18 

APIMZGBL macro, A-7 

B 

bind protocol address to a transport endpoint, 1-40 

bits used by TRECVFR macro instruction, 1-198 

C 

coding order for operands, 1-7 

completion information, 1-3 

confirm indication, 1-66 

connections 
connect indication, 1-118 
connect request, 1-200 
expedited data, 1-173 
listen for connect indication, 1-118 
normal data, 1-173 
receive expedited data, 1-173 
receive normal data on, 1-173 
rejection of connect request, 1-200 
request for, 1-28 

creation of exit lists, 1-101 

D 

datagram 
error indication, 1-185 
receiving, 1-190 

default values for operands, 1-13 

directory service calls 
DIRSRV, 2-5 
GET-HOST-BYALIAS, 2-33 
GET-HOST-BYNAME, 2-16 
GET-HOST-BYVALUE, 2-25 

    Index–1 



  

GET-HOSTINFO-BYNAME, 2-71 
GET-HOSTSERV-BYNAME, 2-79 
GET-NETWORK-BYNAME, 2-41 
GET-NETWORK-BYVALUE, 2-46 
GET-PROTOCOL-BYNAME, 2-51 
GET-PROTOCOL-BYVALUE, 2-56 
GET-ROUTE-BYNAME, 2-88 
GET-RPC-BYNAME, 2-97 
GET-RPC-BYVALUE, 2-103 
GET-SERVICE-BYNAME, 2-61 
GET-SERVICE-BYVALUE, 2-66 
PURGE, 2-108 

DIRSRV macro, 2-1, 2-6 

DIRSRV return codes, 2-15 

disconnect indication acknowledgment, 1-53 

DNS 
domain name space, 2-3 
local configuration data, 2-4 
resource records, 2-3 

Domain Name Resolver (DNR), 2-5 

Domain Name System (DNS). DNS 

dummy control sections, 1-84 

E 

endpoint, associating user with, 1-250 

endpoint states, testing of, 1-240 

error analysis using TPL, 1-87 

error codes 
APCB for AOPEN, 1-20 
for ACLOSE, 1-17 
for ACLOSE macro, 1-17 

executions 
macro instructions, 1-12 
transport service parameter list, 1-95 

exit lists, 1-101 

exit routines, disposition of registers, C-1 

F 

field options, TPL OPTCD on TRECV return, 1-180 

format of macro descriptions, 1-1 

forms 
macro instructions 

for various actions, 1-9 
runtime characteristics, 1-10 

recognized by APIs, A-1 

fullword values, defining transport interface limits, 
1-114 

G 

general-purpose registers, C-1 

GET-HOST- BYALIAS, 2-33 

GET-HOST- BYVALUE, 2-25 

GET-HOST-BYALIAS return codes, 2-39 

GET-HOST-BYNAME, 2-16 

GET-HOST-BYNAME return codes, 2-23 

GET-HOST-BYVALUE return codes, 2-31 

GET-HOSTINFO-BYNAME, 2-71 

GET-HOSTINFO-BYNAME return codes, 2-77 

GET-HOSTSERV- BYNAME, 2-79 

GET-NETWORK- BYNAME, 2-41 

GET-NETWORK-BYNAME return codes, 2-45 

GET-NETWORK-BYVALUE, 2-46 

GET-NETWORK-BYVALUE return codes, 2-50 

GET-PROTOCOL- BYNAME, 2-51 

GET-PROTOCOL- BYVALUE, 2-56 

GET-PROTOCOL-BYNAME return codes, 2-55 

GET-PROTOCOL-BYVALUE return codes, 2-60 

GET-ROUTE-BYNAME, 2-88 

GET-ROUTE-BYNAME return codes, 2-94 

GET-RPC-BYNAME, 2-97 

GET-RPC-BYNAME return codes, 2-101 

GET-RPC-BYVALUE, 2-103 

Index–2     Assembler API Programmer Reference 



  

GET-RPC-BYVALUE return codes, 2-106 

GET-SERVICE- BYVALUE, 2-66 

GET-SERVICE-BYNAME, 2-61 

GET-SERVICE-BYNAME return codes, 2-65 

GET-SERVICE-BYVALUE return codes, 2-70 

I 

immediate disconnect, 1-78 

information retrieval, 1-107 

initiations 
immediate disconnect, 1-78 
orderly release, 1-210 

internal API macro instructions, A-7 

K 

keyword operands, 1-5 

L 

LERAD recovery action codes, 1-103 

linkage conventions, 1-14 

list form for macros, 1-10 

listen, connect indication, 1-118 

load address instruction, 1-13 

M 

macro descriptions, basic format, 1-1 

macro instructions 
ACLOSE, 1-16, B-3 
alternative API, 1-8 
AOPEN, 1-18, B-3 
APCB, 1-22, B-3 
API macros 

integer notes, B-2 
MF operands, A-3 
operand format, B-1 

APIMZGBL, A-7 

Body, 1-4 
completion information, 1-3 
description of, 1-15, 2-5 
DIRSRV, 2-6 
execute form, 1-12 
forms 

runtime characteristics, 1-10 
various actions, 1-9 

forms recognized by the API, A-1 
forms supported by API, A-2 
general -purpose registers, C-1 
GET-HOST-BYALIAS, 2-33 
GET-HOST-BYNAME, 2-16 
GET-HOST-BYVALUE, 2-25 
GET-HOSTINFO-BYNAME, 2-71 
GET-HOSTSERV-BYNAME, 2-79 
GET-NETWORK-BYNAME, 2-41 
GET-NETWORK-BYVALUE, 2-46 
GET-PROTOCOL-BYNAME, 2-51 
GET-PROTOCOL-BYVALUE, 2-56 
GET-ROUTE-BYNAME, 2-88 
GET-RPC-BYNAME, 2-97 
GET-RPC-BYVALUE, 2-103 
GET-SERVICE-BYNAME, 2-61 
GET-SERVICE-BYVALUE, 2-66 
internal API, A-7 
list form, 1-10 
load address, 1-13 
modify form, 1-11 
non-declarative, 1-10 
operands, B-3 

coding order, 1-7 
default values, 1-13 
keywords, 1-5 
loading values, 1-14 
maximum values, 1-13 
notation, 1-4 
optional, 1-12 
positional, 1-7 
required, 1-12 
types, 1-5 

parameter list, 1-8 
PURGE, 2-108 
rules for, A-6 
TACCEPT, B-4 
TACCEPTA, 1-28 
TADDR, 1-34, B-5 
TBIND, 1-40, B-6 
TCHECK, 1-49 
TCLEAR, 1-53, B-7 
TCLOSE, 1-59, B-7 
TCONFIRM, 1-66, B-8 
TCONNECT, 1-73, B-9 

    Index–3 



  

TDISCONN, 1-78, B-10 
TDSECT, 1-84, B-10 
TERROR, 1-87, B-10 
TEXEC, 1-91, B-11 
TEXLST, 1-101, B-11 
TINFO, 1-107, B-12 
TLISTEN, 1-118, B-12 
TOPEN, 1-125, B-13 
TOPTION, 1-136, B-14 
TPL, B-15 
TPL-based linkage conventions for, 1-14 
TRECV, 1-173, B-15 
TRECVER, 1-190 
TRECVERR, 1-185, B-16 
TRECVFR, B-17 
TREJECT, 1-200, B-18 
TRELACK, 1-205, B-18 
TRELEASE, 1-210, B-19 
TRETRACT, 1-215, B-19 
TSEND, 1-219, B-20 
TSENDTO, 1-232, B-20 
TSTATE, 1-240, B-21 
TUNBIND, 1-246, B-21 
TUSER, 1-250, B-22 
uppercase characters in, 1-4 
usage information, 1-4 

macro instructions return codes, 1-4 

macro operands, description of, 1-2 

management of options for transport endpoint, 
1-136 

message format, summary, 1-90 

modify form for macro instructions, 1-11 

N 

names 
Body rules for, 2-4 
locally-managed, 2-4 
simple domain, 2-5 

non-declarative macro instructions, 1-10 

O 

opening a transport endpoint, 1-125 

operand format for API macros, B-1 

operands 
coding order, 1-7 
default values, 1-13 
for macro instructions, B-3 
keywords, 1-5 
loading values, 1-14 
maximum values, 1-13 
optional, 1-12 
positional, 1-7 
required, 1-12 
types of, 1-5 

orderly release 
indication acknowledgment, 1-205 
initiation of, 1-210 

P 

parameter lists 
long form, A-5 
short form, A-5 

positional operands, 1-7 

protocol address 
local, 1-34 
remote, 1-34 
retrieving, 1-34 

provider options, TOPTION TCP, 1-145 

PURGE, 2-108 

PURGE return codes, 2-108 

R 

reason codes 
APEND, 1-105 
TPEND, 1-93, 1-105 

receive 
datagram, 1-190 
datagram error indication, 1-185 
normal or expedited data, 1-173 

recovery action codes 
LERAD, 1-103 
SYNAD, 1-103 

register contents 
on return, 1-15 
routine entry, 1-14 

Index–4     Assembler API Programmer Reference 



  

register usage 
exit routines, C-1 
general purpose, C-1 

rejection of connection request, 1-200 

retrieves 
local or remote protocol addresses, 1-34 
transport protocol information, 1-107 

return codes, 1-4 
DIRSRV, 2-15 
GET-HOST-BYALIAS, 2-39 
GET-HOST-BYNAME, 2-23 
GET-HOST-BYVALUE, 2-31 
GET-HOSTINFO-BYNAME, 2-77 
GET-NETWORK-BYNAME, 2-45 
GET-NETWORK-BYVALUE, 2-50 
GET-PROTOCOL-BYNAME, 2-55 
GET-PROTOCOL-BYVALUE, 2-60 
GET-ROUTE-BYNAME, 2-94 
GET-RPC-BYNAME, 2-101 
GET-RPC-BYVALUE, 2-106 
GET-SERVICE-BYNAME, 2-65 
GET-SERVICE-BYVALUE, 2-70 
PURGE, 2-108 
TACCEPT, 1-32 
TADDR, 1-38 
TBIND, 1-46 
TCHECK, 1-50 
TCLEAR, 1-56 
TCLOSE, 1-63 
TCONFIRM, 1-71 
TCONNECT, 1-76 
TDISCONN, 1-81 
TERROR, 1-88 
TEXEC, 1-99 
TINFO, 1-111 
TLISTEN, 1-122 
TOPEN, 1-134 
TOPTION, 1-142 
TPL, 1-171 
TRECV, 1-181 
TRECVERR, 1-189 
TRECVFR, 1-197 
TREJECT, 1-203 
TRELACK, 1-208 
TRELEASE, 1-213 
TRETRACT, 1-217 
TSEND, 1-226 
TSENDTO, 1-237 
TSTATE, 1-241 
TUNBIND, 1-248 
TUSER, 1-254 

runtime characteristics, various macro instruction 
forms, 1-10 

S 

standard API endpoint states (in TPL DSECT), 1-242 

summary message format, 1-90 

SYNAD recovery action codes, 1-103 

syntax for macro instructions, 1-4 

T 

TACCEPT macro, 1-28, B-4 

TACCEPT return codes, 1-32 

TADDR macro, 1-34, B-5 

TADDR return codes, 1-38 

TBIND macro, 1-40, B-6 

TBIND return codes, 1-46 

TCHECK macro, 1-49 

TCHECK return codes, 1-50 

TCLEAR macro, 1-53, B-7 

TCLEAR return codes, 1-56 

TCLOSE macro, 1-59, B-7 

TCLOSE return codes, 1-63 

TCONFIRM macro, 1-66, B-8 

TCONFIRM return codes, 1-71 

TCONNECT macro, 1-73, B-9 

TCONNECT return codes, 1-76 

TDISCONN macro, 1-78, B-10 

TDISCONN return codes, 1-81 

TDSECT macro, 1-84, B-10 

TERROR macro, 1-87, B-10 

TERROR return codes, 1-88 

TEXEC macro, 1-91, B-11 

TEXEC return codes, 1-99 

TEXLST macro, 1-101, B-11 

    Index–5 



  

TINFO macro, 1-107, B-12 

TINFO macro return codes, 1-111 

TLISTEN macro, 1-118, B-12 

TLISTEN return codes, 1-122 

TOPEN macro, 1-125, B-13 

TOPEN return codes, 1-134 

TOPTION macro, 1-136, B-14 

TOPTION OPTCD=API options, 1-144 

TOPTION return codes, 1-142 

TOPTION TCP provider options, 1-145 

TPEND reason codes, 1-93, 1-105 

TPL 
error analysis, 1-87 
macro instruction rules for, A-6 
testing of, 1-240 

TPL DSECT, API endpoint states, 1-242 

TPL macro, B-15 

TPL OPTCD, field options on TRECV return, 1-180 

TPL return codes, 1-171 

TPL-based macros, 1-14 

transport 
connection request, 1-73 
endpoint 

bound to protocol address, 1-40 
closing of, 1-59 
managing options for, 1-136 
opening of, 1-125 

protocol, retrieving information, 1-107 
service parameter list, 1-95 

transport interface limits fullword values, 1-114 

TRECV macro, 1-173, B-15 
return field options, TPL OPTCD, 1-180 
return codes, 1-181 

TRECVERR macro, 1-185, B-16 

TRECVERR macro return codes, 1-189 

TRECVFR macro, 1-190, B-17 
bits used by, 1-198 

TRECVFR macro return codes, 1-197 

TREJECT macro, 1-200, B-18 

TREJECT macro return codes, 1-203 

TRELACK macro, 1-205, B-18 

TRELACK macro return codes, 1-208 

TRELEASE macro, 1-210, B-19 

TRELEASE macro return codes, 1-213 

TRETRACT macro, 1-215, B-19 

TRETRACT macro return codes, 1-217 

TSEND macro, 1-219, B-20 

TSEND macro return codes, 1-226 

TSENDTO macro, 1-232, B-20 

TSENDTO macro return codes, 1-237 

TSTATE macro, 1-240, B-21 

TSTATE macro return codes, 1-241 

TUNBIND macro, 1-246, B-21 

TUNBIND macro return codes, 1-248 

TUSER macro, 1-250, B-22 

TUSER macro return codes, 1-254 

U 

unbind protocol address from endpoint, 1-246 

unsuccessful completion return codes, AOPEN, 1-19 

uppercase characters in macros, 1-4 

 

Index–6     Assembler API Programmer Reference 



  

 

 



  

 

  

     

 

 

     


	Assembler API Programmer Reference
	Contents
	Chapter 1: Assembler Language Macro Instructions
	Conventions, Definitions, and Terminology
	Basic Format of Macro Descriptions
	Assembler Format Description
	Syntax Description
	Completion Information
	Return Codes
	Usage Information

	Macro Instruction Operand Notation
	Macro Instruction Operand Types
	Keyword Operands
	Positional Operands
	Operand Coding Order

	List, Generate, Modify, and Execute Forms
	Standard Macro Instruction Disadvantages
	Alternative API Macro Instructions
	Actions Taken for Various Macro Instruction Forms
	Runtime Characteristics of Various Macro Instruction Forms
	List Form
	Modify Form
	Execute Form
	Optional and Required Operands
	Default and Maximum Values

	Linkage Conventions
	Register Contents on Routine Entry
	Register Contents on Return


	Macro Instructions Descriptions
	ACLOSE
	Completion Information
	Return Codes
	Usage Information

	AOPEN
	Completion Information
	Usage Information

	APCB
	Completion Information
	Return Codes
	Usage Information

	TACCEPT
	Completion Information
	Return Codes
	Usage Information

	TADDR
	Completion Information
	Return Codes
	Usage Information

	TBIND
	Completion Information
	Return Codes
	Usage Information

	TCHECK
	Completion Information
	Return Codes
	Usage Information

	TCLEAR
	Completion Information
	Return Codes
	Usage Information

	TCLOSE
	Completion Information
	Return Codes
	Usage Information

	TCONFIRM
	Completion Information
	Return Codes
	Usage Information

	TCONNECT
	Completion Information
	Return Codes
	Usage Information

	TDISCONN
	Completion Information
	Return Codes
	Usage Information

	TDSECT
	Completion Information
	Return Codes
	Usage Information

	TERROR
	Completion Information
	Return Codes
	Usage Information
	Format of a Verbatim Message

	TEVNTLST
	Event Codes
	TPEND Reason Codes
	Completion Information
	Return Codes
	Usage Information

	TEXEC
	Completion Information
	Return Codes
	Usage Information

	TEXLST
	Recovery Action Codes
	Event Codes
	APEND and TPEND Reason Codes
	Completion Information
	Return Codes
	Usage Information

	TINFO
	Completion Information
	Return Codes
	Usage Information
	Basic Protocol Information Returned
	Transport Service Limits
	Transport Interface Limits
	Transport Provider Limits

	TLISTEN
	Completion Information
	Return Codes
	Usage Information

	TOPEN
	Completion Information
	Return Codes
	Usage Information

	TOPTION
	Completion Information
	Return Codes
	Usage Information
	Transport Provider Options
	TCP Provider Session Options
	TCP/UDP/RAW Provider Session Options

	TPL
	Completion Information
	Return Codes
	Usage Information

	TRECV
	Completion Information
	Return Codes
	Usage Information
	TCP Provider Session Options
	Return Indicators

	TRECVERR
	Completion Information
	Return Codes
	Usage Information

	TRECVFR
	Completion Information
	Return Codes
	Usage Information

	TREJECT
	Completion Information
	Return Codes
	Usage Information

	TRELACK
	Completion Information
	Return Codes
	Usage Information

	TRELEASE
	Completion Information
	Return Codes
	Usage Information

	TRETRACT
	Completion Information
	Return Codes
	Usage Information

	TSEND
	Completion Information
	Return Codes
	Usage Information
	Data Transfer Modes
	TLI Mode
	Socket Mode


	TSENDTO
	Completion Information
	Return Codes
	Usage Information

	TSTATE
	Completion Information
	Return Codes
	Usage Information

	TUNBIND
	Completion Information
	Return Codes
	Usage Information

	TUSER
	Completion Information
	Return Codes
	Usage Information


	Chapter 2: DNR Directory Services
	Directory Database
	Domain Name System
	Local Configuration Data

	Syntactic Rules for Names
	Locally-Managed Names
	Simple Domain Names

	Directory Services Calls
	DIRSRV
	Completion Information
	Return Codes

	GET-HOST-BYNAME
	Completion Information
	Return Codes
	Usage Information

	GET-HOST-BYVALUE
	Completion Information
	Return Codes
	Usage Information

	GET-HOST-BYALIAS
	Completion Information
	Return Codes
	Usage Information

	GET-NETWORK-BYNAME
	Completion Information
	Return Codes

	GET-NETWORK-BYVALUE
	Completion Information
	Return Codes

	GET-PROTOCOL-BYNAME
	Completion Information
	Return Codes

	GET-PROTOCOL-BYVALUE
	Completion Information
	Return Codes

	GET-SERVICE-BYNAME
	Completion Information
	Return Codes

	GET-SERVICE-BYVALUE
	Completion Information
	Return Codes

	GET-HOSTINFO-BYNAME
	Completion Information

	Return Codes
	Usage Information

	GET-HOSTSERV-BYNAME
	Completion Information
	Return Codes
	Usage Information

	GET-ROUTE-BYNAME
	Completion Information
	Return Codes
	Usage Information

	GET-RPC-BYNAME
	Completion Information
	Return Codes

	GET-RPC-BYVALUE
	Completion Information
	Return Codes

	PURGE
	Return Codes


	Appendix A: MF Operand Summary
	Macro Instruction Forms Supported by the API
	MF Operands Supported by API Macro Instructions
	Short, Long and Extended Parameter List Forms
	Macro Instruction Rules

	Internal API Macro Instructions
	The APIMZGBL Macro Instruction
	Assembler Format Description



	Appendix B: Macro Instruction Operand Summary
	Information Provided
	Integer Notes
	Macro Instruction Operands

	Appendix C: Register Usage Summary
	API Register Usage

	Appendix D: Data Structures (Assembler Language)
	Generating Dummy Control Sections
	Data Structure Names

	Assembler Language Definitions
	APCB (Application Program Control Block)
	APCBXL (APCB Exit List)
	TEM (Transport Endpoint Error Message)
	TIB (Transport Service Information Block)
	TPA (Transport Protocol Address)
	TPL (Transport Service Parameter List)
	TPO (Transport Protocol Options)
	TSW – Transport Endpoint State Word
	TUB (Transport Endpoint User Block)
	TXL (Transport Endpoint Exit Lis)
	TXP (Transport Endpoint Exit Parameters)


	Index


	booklist: 


